Python?matplotlib可視化之繪制韋恩圖
本文速覽
2組數(shù)據(jù)venn

3組數(shù)據(jù)venn

4組數(shù)據(jù)venn

5組數(shù)據(jù)venn圖

6組數(shù)據(jù)venn

python中Matplotlib并沒有現(xiàn)成的函數(shù)可直接繪制venn圖, 不過已經(jīng)有前輩基于matplotlib.patches及matplotlib.path開發(fā)了兩個輪子:
matplotlib_venn【2~3組數(shù)據(jù),比較多博客介紹】:https://github.com/konstantint/matplotlib-venn
pyvenn【2~6組數(shù)據(jù)】:https://github.com/tctianchi/pyvenn
1、 matplotlib_venn
該模塊包含'venn2', 'venn2_circles', 'venn3', 'venn3_circles'四個關(guān)鍵函數(shù),這里主要詳細介紹'venn2','venn3'同理。
(1)2組數(shù)據(jù)venn圖
matplotlib_venn.venn2(subsets, set_labels=('A', 'B'), set_colors=('r', 'g'), alpha=0.4, normalize_to=1.0, ax=None, subset_label_formatter=None)
繪圖數(shù)據(jù)格式
subsets參數(shù)接收繪圖數(shù)據(jù)集,以下5種方式均可以,注意細微異同。
#導入依賴packages
import matplotlib.pyplot as plt
from matplotlib_venn import venn2,venn2_circles#記得安裝matplotlib_venn(pip install matplotlib_venn 或者conda install matplotlib_venn)
# subsets參數(shù)
#繪圖數(shù)據(jù)的格式,以下5種方式均可以,注意異同
subset = [[{1,2,3},{1,2,4}],#列表list(集合1,集合2)
({1,2,3},{1,2,4}),#元組tuple(集合1,集合2)
{'10': 1, '01': 1, '11': 2},#字典dict(A獨有,B獨有,AB共有)
(3, 3, 2),####元組tuple(A有,B有,AB共有),注意和其它幾種方式的異同點
[3,3,2]#列表list(A有,B有,AB共有)
]
for i in subset:
my_dpi=100
plt.figure(figsize=(500/my_dpi, 500/my_dpi), dpi=my_dpi)
g=venn2(subsets=i)#默認數(shù)據(jù)繪制venn圖,只需傳入繪圖數(shù)據(jù)
plt.title('subsets=%s'%str(i))
plt.show()




一些簡單參數(shù)介紹
my_dpi=150
plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi)#控制圖尺寸的同時,使圖高分辨率(高清)顯示
g=venn2(subsets = [{1,2,3},{1,2,4}], #繪圖數(shù)據(jù)集
set_labels = ('Label 1', 'Label 2'), #設(shè)置組名
set_colors=("#098154","#c72e29"),#設(shè)置圈的顏色,中間顏色不能修改
alpha=0.6,#透明度
normalize_to=1.0,#venn圖占據(jù)figure的比例,1.0為占滿
)
plt.show()
所有圈外框?qū)傩栽O(shè)置
my_dpi=150
plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi)
g=venn2(subsets = [{1,2,3},{1,2,4}],
set_labels = ('Label 1', 'Label 2'),
set_colors=("#098154","#c72e29"),
alpha=0.6,
normalize_to=1.0,
)
g=venn2_circles(subsets = [{1,2,3},{1,2,4}],
linestyle='--', linewidth=0.8, color="black"#外框線型、線寬、顏色
)
plt.show()
單個圈特性設(shè)置
g.get_patch_by_id('10')返回一個matplotlib.patches.PathPatch對象,有諸多參數(shù)可個性化修改 ,詳細見matplotlib官網(wǎng)。
my_dpi=150
plt.figure(figsize=(550/my_dpi, 550/my_dpi), dpi=my_dpi)
g=venn2(subsets = [{1,2,3},{1,2,4}],
set_labels = ('Label 1', 'Label 2'),
set_colors=("#098154","#c72e29"),
alpha=0.6,
normalize_to=1.0,
)
g.get_patch_by_id('10').set_edgecolor('red')#左圈外框顏色
g.get_patch_by_id('10').set_linestyle('--')#左圈外框線型
g.get_patch_by_id('10').set_linewidth(2)#左圈外框線寬
g.get_patch_by_id('01').set_edgecolor('green')#右圈外框顏色
g.get_patch_by_id('11').set_edgecolor('blue')#中間圈外框顏色
plt.show()
單個圈文本設(shè)置
g.get_label_by_id('10') 返回一個matplotlib.text.Text對象,有諸多參數(shù)可個性化修改 ,詳細見matplotlib官網(wǎng)。
my_dpi=150
plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi)
g=venn2(subsets = [{1,2,3},{1,2,4}],
set_labels = ('Label 1', 'Label 2'),
set_colors=("#098154","#c72e29"),
alpha=0.6,
normalize_to=1.0,
)
g.get_label_by_id('10').set_fontfamily('Microsoft YaHei')#左圈中1的字體設(shè)置為微軟雅黑
g.get_label_by_id('10').set_fontsize(20)#1的大小設(shè)置為20
g.get_label_by_id('10').set_color('r')#1的顏色
g.get_label_by_id('10').set_rotation(45)#1的傾斜度
添加額外注釋
my_dpi=150
plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi)#控制圖尺寸的同時,使圖高分辨率(高清)顯示
g=venn2(subsets = [{1,2,3},{1,2,4}], #繪圖數(shù)據(jù)集
set_labels = ('Label 1', 'Label 2'), #設(shè)置組名
set_colors=("#098154","#c72e29"),#設(shè)置圈的顏色,中間顏色不能修改
alpha=0.6,#透明度
normalize_to=1.0,#venn圖占據(jù)figure的比例,1.0為占滿
)
plt.annotate('I like this green part!',
color='#098154',
xy=g.get_label_by_id('10').get_position() - np.array([0, 0.05]),
xytext=(-80,40),
ha='center', textcoords='offset points',
bbox=dict(boxstyle='round,pad=0.5', fc='#098154', alpha=0.6),#注釋文字底紋
arrowprops=dict(arrowstyle='-|>', connectionstyle='arc3,rad=0.5',color='#098154')#箭頭屬性設(shè)置
)
plt.annotate('She like this red part!',
color='#c72e29',
xy=g.get_label_by_id('01').get_position() + np.array([0, 0.05]),
xytext=(80,40),
ha='center', textcoords='offset points',
bbox=dict(boxstyle='round,pad=0.5', fc='#c72e29', alpha=0.6),
arrowprops=dict(arrowstyle='-|>', connectionstyle='arc3,rad=0.5',color='#c72e29')
)
plt.annotate('We both dislike this strange part!',
color='black',
xy=g.get_label_by_id('11').get_position() + np.array([0, 0.05]),
xytext=(20,80),
ha='center', textcoords='offset points',
bbox=dict(boxstyle='round,pad=0.5', fc='grey', alpha=0.6),
arrowprops=dict(arrowstyle='-|>', connectionstyle='arc3,rad=-0.5',color='black')
)
plt.show()
多子圖繪制venn圖
fig,axs=plt.subplots(1,3, figsize=(10,8),dpi=150)
g=venn2(subsets = [{1,2,3},{1,2,4}],
set_labels = ('Label 1', 'Label 2'),
set_colors=("#098154","#c72e29"),
alpha=0.6,
normalize_to=1.0,
ax=axs[0],#該參數(shù)指定
)
g=venn2(subsets = [{1,2,3,4,5,6},{1,2,4,5,6,7,8}],
set_labels = ('Label 3', 'Label 4'),
set_colors=("#098154","#c72e29"),
alpha=0.6,
normalize_to=1.0,
ax=axs[1],
)
g=venn2(subsets = [{0,1,2,3},{1,2,4}],
set_labels = ('Label 5', 'Label 6'),
set_colors=("#098154","#c72e29"),
alpha=0.6,
normalize_to=1.0,
ax=axs[2],
)
plt.show()
(2)3組數(shù)據(jù)venn圖
matplotlib_venn.venn3(subsets, set_labels=('A', 'B', 'C'), set_colors=('r', 'g', 'b'), alpha=0.4, normalize_to=1.0, ax=None, subset_label_formatter=None)
參數(shù)和venn2幾乎一樣,介紹幾個重要參數(shù)
基本參數(shù)介紹
my_dpi=150
plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi)#控制圖尺寸的同時,使圖高分辨率(高清)顯示
g=venn3(subsets = [{1,2,3},{1,2,4},{2,6,7}], #傳入三組數(shù)據(jù)
set_labels = ('Label 1', 'Label 2','Label 3'), #設(shè)置組名
set_colors=("#01a2d9", "#31A354", "#c72e29"),#設(shè)置圈的顏色,中間顏色不能修改
alpha=0.8,#透明度
normalize_to=1.0,#venn圖占據(jù)figure的比例,1.0為占滿
)
plt.show()
個性化設(shè)置圖中7部分每一部分
(100, 010, 110, 001, 101, 011, 111)分別代替每一小塊,那么代替的是那一小塊了?
my_dpi=150
plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi)
g=venn3(subsets = [{1,2,3},{1,2,4},{2,6,7}],
set_labels = ('Label 1', 'Label 2','Label 3'),
set_colors=("#01a2d9", "#31A354", "#c72e29"),
alpha=0.8,
normalize_to=1.0,
)
for i in list('100, 010, 110, 001, 101, 011, 111'.split(', ')):
g.get_label_by_id('%s'%i).set_text('%s'%i)#修改每個組分的文本
#然后就可以如同venn2中那樣個性化設(shè)置了
g.get_label_by_id('110').set_color('red')#1的顏色
g.get_patch_by_id('110').set_edgecolor('red')
plt.show()

2、pyvenn
同樣,該庫還是基于matplotlib.patches二次開發(fā);
區(qū)別于上文,pyvenn支持2到6組數(shù)據(jù);matplotlib_venn更加靈活多變。
pyvenn具有'venn2', 'venn3', 'venn4', 'venn5', 'venn6'五大主要函數(shù),這里主要介紹venn2,其它同理。
2組數(shù)據(jù)venn
venn.draw_annotate、venn.draw_text、venn.venn2中的fill()參數(shù)非常助于個性化設(shè)置。
venn2(labels, names=['A', 'B'], **options)
import matplotlib.pyplot as plt
#添加pyvenn路徑
import sys
sys.path.append(r'path\pyvenn-master')
import venn
mycolor=[[0.10588235294117647, 0.6196078431372549, 0.4666666666666667,0.6],
[0.9058823529411765, 0.1607843137254902, 0.5411764705882353, 0.6]]
labels = venn.get_labels([[1,2,3,4,5,6],[1,2,4,5,6,7,8]], fill=['number',
'logic',#開啟每個組分代碼
'percent'#每個組分的百分比
],
)
fig, ax = venn.venn2(labels,
names=list('AB'),
dpi=96,
colors=mycolor,#傳入RPGA色號,直接傳hex色號或者RGB會導致重疊部分被覆蓋
fontsize=15,#控制組名及中間數(shù)字大小
)
plt.style.use('seaborn-whitegrid')
ax.set_axis_on()#開啟坐標網(wǎng)格線
#ax.set_title('venn2')
# 提取plt.annotate部分參數(shù)
venn.draw_annotate(fig, ax, x=0.3, y=0.18, #箭頭的位置
textx=0.1, texty=0.05, #箭尾的位置
text='Aoligei!', color='r', #注釋文本屬性
arrowcolor='r',#箭頭的顏色等屬性
)
#添加文本
venn.draw_text(fig, ax, x=0.25, y=0.2, text='number:logic(percent)',
fontsize=12, ha='center', va='center')
3組數(shù)據(jù)venn
labels = venn.get_labels([range(10), range(5, 15), range(3, 8)], fill=['number',
'logic',
'percent'
]
)
fig, ax = venn.venn3(labels, names=list('ABC'),dpi=96)
fig.show()
4組數(shù)據(jù)venn
labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17)], fill=['number',
'logic',
'percent'
])
fig, ax = venn.venn4(labels, names=list('ABCD'))
fig.show()
5組數(shù)據(jù)venn
labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17), range(10, 20)], fill=['number',
'logic',
'percent'
])
fig, ax = venn.venn5(labels, names=list('ABCDEF'))
fig.show()
6組數(shù)據(jù)venn
labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17), range(10, 20), range(13, 25)], fill=['number', 'logic','percent'])
fig, ax = venn.venn6(labels, names=list('ABCDEF'))
fig.show()
以上就是Python matplotlib可視化之繪制韋恩圖的詳細內(nèi)容,更多關(guān)于Python matplotlib韋恩圖的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
輕量級的Web框架Flask 中模塊化應(yīng)用的實現(xiàn)
詳解如何修改jupyter notebook的默認目錄和默認瀏覽器
Python爬取網(wǎng)站圖片并保存的實現(xiàn)示例

