Python實現(xiàn)的matplotlib動畫演示之細(xì)胞自動機(jī)
維基百科上有個有意思的話題叫細(xì)胞自動機(jī):https://en.wikipedia.org/wiki/Cellular_automaton
在20世紀(jì)70年代,一種名為生命游戲的二維細(xì)胞自動機(jī)變得廣為人知,特別是在早期的計算機(jī)界。由約翰 · 康威發(fā)明,馬丁 · 加德納在《科學(xué)美國人》的一篇文章中推廣,其規(guī)則如下:
- Any live cell with fewer than two live neighbours dies, as if caused by underpopulation.
- Any live cell with two or three live neighbours lives on to the next generation.
- Any live cell with more than three live neighbours dies, as if by overpopulation.
- Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.
總結(jié)就是:任何活細(xì)胞在有兩到三個活鄰居時能活到下一代,否則死亡。任何有三個活鄰居的死細(xì)胞會變成活細(xì)胞,表示繁殖。
在Conway’s Game of Life中,展示了幾種初始狀態(tài):

下面我們用python來模擬,首先嘗試表示Beacon:
import numpy as np import matplotlib.pyplot as plt universe = np.zeros((6, 6), "byte") # Beacon universe[1:3, 1:3] = 1 universe[3:5, 3:5] = 1 print(universe) im = plt.imshow(universe, cmap="binary")
[[0 0 0 0 0 0] [0 1 1 0 0 0] [0 1 1 0 0 0] [0 0 0 1 1 0] [0 0 0 1 1 0] [0 0 0 0 0 0]]

可以看到已經(jīng)成功的打印出了Beacon的形狀,下面我們繼續(xù)編寫細(xì)胞自動機(jī)的演化規(guī)則:
def cellular_auto(universe):
universe_new = universe.copy()
h, w = universe.shape
for y in range(h):
for x in range(w):
neighbor_num = universe[x-1:x+2, y-1:y+2].sum()-universe[x, y]
# 任何有三個活鄰居的死細(xì)胞都變成了活細(xì)胞,繁殖一樣。
if universe[x, y] == 0 and neighbor_num == 3:
universe_new[x, y] = 1
# 任何有兩到三個活鄰居的活細(xì)胞都能活到下一代,否則就會死亡。
if universe[x, y] == 1 and neighbor_num not in (2, 3):
universe_new[x, y] = 0
return universe_new
universe = cellular_auto(universe)
print(universe)
plt.axis("off")
im = plt.imshow(universe, cmap="binary")
[[0 0 0 0 0 0] [0 1 1 0 0 0] [0 1 0 0 0 0] [0 0 0 0 1 0] [0 0 0 1 1 0] [0 0 0 0 0 0]]

ArtistAnimation動畫
基于此我們可以制作matplotlib的動畫,下面直接將Blinker、Toad、Beacon都放上去:
from matplotlib import animation
import numpy as np
import matplotlib.pyplot as plt
%matplotlib notebook
def cellular_auto(universe):
universe_new = universe.copy()
h, w = universe.shape
for y in range(h):
for x in range(w):
neighbor_num = universe[x-1:x+2, y-1:y+2].sum()-universe[x, y]
# 任何有三個活鄰居的死細(xì)胞都變成了活細(xì)胞,繁殖一樣。
if universe[x, y] == 0 and neighbor_num == 3:
universe_new[x, y] = 1
# 任何有兩到三個活鄰居的活細(xì)胞都能活到下一代,否則就會死亡。
if universe[x, y] == 1 and neighbor_num not in (2, 3):
universe_new[x, y] = 0
return universe_new
universe = np.zeros((12, 12), "byte")
# Blinker
universe[2, 1:4] = 1
# Beacon
universe[4:6, 5:7] = 1
universe[6:8, 7:9] = 1
# Toad
universe[8, 2:5] = 1
universe[9, 1:4] = 1
fig = plt.figure()
plt.axis("off")
im = plt.imshow(universe, cmap="binary")
frame = []
for _ in range(2):
frame.append((plt.imshow(universe, cmap="binary"),))
universe = cellular_auto(universe)
animation.ArtistAnimation(fig, frame, interval=500, blit=True)
然后我們畫一下Pulsar:
# Pulsar
universe = np.zeros((17, 17), "byte")
universe[[2, 7, 9, 14], 4:7] = 1
universe[[2, 7, 9, 14], 10:13] = 1
universe[4:7, [2, 7, 9, 14]] = 1
universe[10:13, [2, 7, 9, 14]] = 1
fig = plt.figure()
plt.axis("off")
im = plt.imshow(universe, cmap="binary")
frame = []
for _ in range(3):
frame.append((plt.imshow(universe, cmap="binary"),))
universe = cellular_auto(universe)
animation.ArtistAnimation(fig, frame, interval=500, blit=True)

FuncAnimation動畫
另一種創(chuàng)建matplotlib動畫的方法是使用FuncAnimation,完整代碼:
from matplotlib import animation
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import HTML
# %matplotlib notebook
def cellular_auto(universe):
universe_new = universe.copy()
h, w = universe.shape
for y in range(h):
for x in range(w):
neighbor_num = universe[x-1:x+2, y-1:y+2].sum()-universe[x, y]
# 任何有三個活鄰居的死細(xì)胞都變成了活細(xì)胞,繁殖一樣。
if universe[x, y] == 0 and neighbor_num == 3:
universe_new[x, y] = 1
# 任何有兩到三個活鄰居的活細(xì)胞都能活到下一代,否則就會死亡。
if universe[x, y] == 1 and neighbor_num not in (2, 3):
universe_new[x, y] = 0
return universe_new
def update(i=0):
global universe
im.set_data(universe)
universe = cellular_auto(universe)
return im,
# Pulsar
universe = np.zeros((17, 17), "byte")
universe[[2, 7, 9, 14], 4:7] = 1
universe[[2, 7, 9, 14], 10:13] = 1
universe[4:7, [2, 7, 9, 14]] = 1
universe[10:13, [2, 7, 9, 14]] = 1
fig = plt.figure()
plt.axis("off")
im = plt.imshow(universe, cmap="binary")
plt.show()
anim = animation.FuncAnimation(
fig, update, frames=3, interval=500, blit=True)
HTML(anim.to_jshtml())
這種動畫生成速度較慢,好處是可以導(dǎo)出html文件:
with open("out.html", "w") as f:
f.write(anim.to_jshtml())
還可以保存MP4視頻:
anim.save("out.mp4")
或gif動畫:
anim.save("out.gif")
注意:保存MP4視頻或GIF動畫,需要事先將ffmpeg配置到環(huán)境變量中
ffmpeg下載地址:
鏈接: https://pan.baidu.com/s/1aioB_BwpKb6LxJs26HbbiQ?pwd=ciui
提取碼: ciui
隨機(jī)生命游戲
接下來,我們創(chuàng)建一個50*50的二維生命棋盤,并選取其中1500個位置作為初始活細(xì)胞點,我們看看最終生成的動畫如何。
完整代碼如下:
from matplotlib import animation
import numpy as np
import matplotlib.pyplot as plt
%matplotlib notebook
def cellular_auto(universe):
universe_new = universe.copy()
h, w = universe.shape
for y in range(1, h-1):
for x in range(1, w-1):
neighbor_num = universe[x-1:x+2, y-1:y+2].sum()-universe[x, y]
# 任何有三個活鄰居的死細(xì)胞都變成了活細(xì)胞,繁殖一樣。
if universe[x, y] == 0 and neighbor_num == 3:
universe_new[x, y] = 1
# 任何有兩到三個活鄰居的活細(xì)胞都能活到下一代,否則就會死亡。
if universe[x, y] == 1 and neighbor_num not in (2, 3):
universe_new[x, y] = 0
# 邊緣置零
universe[[0, -1]] = 0
universe[:, [0, -1]] = 0
return universe_new
boardsize, pad = 50, 2
universe = np.zeros((boardsize+pad, boardsize+pad), "byte")
# 隨機(jī)選取1500個點作為初始活細(xì)胞
for i in range(1500):
x, y = np.random.randint(1, boardsize+1, 2)
universe[y, x] = 1
fig = plt.figure()
plt.axis("off")
im = plt.imshow(universe, cmap="binary")
frame = []
for _ in range(200):
frame.append((plt.imshow(universe, cmap="binary"),))
universe = cellular_auto(universe)
animation.ArtistAnimation(fig, frame, interval=50, blit=True)
到此這篇關(guān)于Python實現(xiàn)的matplotlib動畫演示之細(xì)胞自動機(jī)的文章就介紹到這了,更多相關(guān)python matplotlib動畫內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python運用sklearn實現(xiàn)KNN分類算法
這篇文章主要為大家詳細(xì)介紹了python運用sklearn實現(xiàn)KNN分類算法,文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下2019-10-10
教你用python實現(xiàn)一個無界面的小型圖書管理系統(tǒng)
今天帶大家學(xué)習(xí)怎么用python實現(xiàn)一個無界面的小型圖書管理系統(tǒng),文中有非常詳細(xì)的圖文解說及代碼示例,對正在學(xué)習(xí)python的小伙伴們有很好地幫助,需要的朋友可以參考下2021-05-05
python?如何實現(xiàn)跳過異常繼續(xù)執(zhí)行
這篇文章主要介紹了python?如何實現(xiàn)跳過異常繼續(xù)執(zhí)行,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2022-07-07
深入了解Python?Opencv數(shù)據(jù)增強(qiáng)
常見的數(shù)據(jù)增強(qiáng)操作有:按比例放大或縮小圖片、旋轉(zhuǎn)、平移、水平翻轉(zhuǎn)、改變圖像通道等。本文將通過Python?OpenCV實現(xiàn)這些操作,需要的可以參考一下2022-02-02

