Python實(shí)現(xiàn)12種降維算法的示例代碼
網(wǎng)上關(guān)于各種降維算法的資料參差不齊,同時(shí)大部分不提供源代碼。這里有個(gè) GitHub 項(xiàng)目整理了使用 Python 實(shí)現(xiàn)了 11 種經(jīng)典的數(shù)據(jù)抽取(數(shù)據(jù)降維)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相關(guān)資料、展示效果;非常適合機(jī)器學(xué)習(xí)初學(xué)者和剛剛?cè)肟訑?shù)據(jù)挖掘的小伙伴。
為什么要進(jìn)行數(shù)據(jù)降維
所謂降維,即用一組個(gè)數(shù)為 d 的向量 Zi 來代表個(gè)數(shù)為 D 的向量 Xi 所包含的有用信息,其中 d
通常,我們會(huì)發(fā)現(xiàn)大部分?jǐn)?shù)據(jù)集的維度都會(huì)高達(dá)成百乃至上千,而經(jīng)典的 MNIST,其維度都是 64。

MNIST 手寫數(shù)字?jǐn)?shù)據(jù)集
但在實(shí)際應(yīng)用中,我們所用到的有用信息卻并不需要那么高的維度,而且每增加一維所需的樣本個(gè)數(shù)呈指數(shù)級(jí)增長(zhǎng),這可能會(huì)直接帶來極大的「維數(shù)災(zāi)難」;而數(shù)據(jù)降維就可以實(shí)現(xiàn):
- 使得數(shù)據(jù)集更易使用
- 確保變量之間彼此獨(dú)立
- 降低算法計(jì)算運(yùn)算成本
去除噪音一旦我們能夠正確處理這些信息,正確有效地進(jìn)行降維,這將大大有助于減少計(jì)算量,進(jìn)而提高機(jī)器運(yùn)作效率。而數(shù)據(jù)降維,也常應(yīng)用于文本處理、人臉識(shí)別、圖片識(shí)別、自然語言處理等領(lǐng)域。
數(shù)據(jù)降維原理
往往高維空間的數(shù)據(jù)會(huì)出現(xiàn)分布稀疏的情況,所以在降維處理的過程中,我們通常會(huì)做一些數(shù)據(jù)刪減,這些數(shù)據(jù)包括了冗余的數(shù)據(jù)、無效信息、重復(fù)表達(dá)內(nèi)容等。
例如:現(xiàn)有一張 1024*1024 的圖,除去中心 50*50 的區(qū)域其它位置均為零值,這些為零的信息就可以歸為無用信息;而對(duì)于對(duì)稱圖形而言,對(duì)稱部分的信息則可以歸為重復(fù)信息。
因此,大部分經(jīng)典降維技術(shù)也是基于這一內(nèi)容而展開,其中降維方法又分為線性和非線性降維,非線性降維又分為基于核函數(shù)和基于特征值的方法。
- 線性降維方法:PCA 、ICA LDA、LFA、LPP(LE 的線性表示)
- 非線性降維方法:
基于核函數(shù)的非線性降維方法——KPCA 、KICA、KDA
基于特征值的非線性降維方法(流型學(xué)習(xí))——ISOMAP、LLE、LE、LPP、LTSA、MVU
哈爾濱工業(yè)大學(xué)計(jì)算機(jī)技術(shù)專業(yè)的在讀碩士生 Heucoder 則整理了 PCA、KPCA、LDA、MDS、ISOMAP、LLE、TSNE、AutoEncoder、FastICA、SVD、LE、LPP 共 12 種經(jīng)典的降維算法,并提供了相關(guān)資料、代碼以及展示,下面將主要以 PCA 算法為例介紹降維算法具體操作。
主成分分析(PCA)降維算法
PCA 是一種基于從高維空間映射到低維空間的映射方法,也是最基礎(chǔ)的無監(jiān)督降維算法,其目標(biāo)是向數(shù)據(jù)變化最大的方向投影,或者說向重構(gòu)誤差最小化的方向投影。它由 Karl Pearson 在 1901 年提出,屬于線性降維方法。與 PCA 相關(guān)的原理通常被稱為最大方差理論或最小誤差理論。這兩者目標(biāo)一致,但過程側(cè)重點(diǎn)則不同。

最大方差理論降維原理
將一組 N 維向量降為 K 維(K 大于 0,小于 N),其目標(biāo)是選擇 K 個(gè)單位正交基,各字段兩兩間 COV(X,Y) 為 0,而字段的方差則盡可能大。因此,最大方差即使得投影數(shù)據(jù)的方差被最大化,在這過程中,我們需要找到數(shù)據(jù)集 Xmxn 的最佳的投影空間 Wnxk、協(xié)方差矩陣等,其算法流程為:
- 算法輸入:數(shù)據(jù)集 Xmxn;
- 按列計(jì)算數(shù)據(jù)集 X 的均值 Xmean,然后令 Xnew=X−Xmean;
- 求解矩陣 Xnew 的協(xié)方差矩陣,并將其記為 Cov;
- 計(jì)算協(xié)方差矩陣 COV 的特征值和相應(yīng)的特征向量;
- 將特征值按照從大到小的排序,選擇其中最大的 k 個(gè),然后將其對(duì)應(yīng)的 k 個(gè)特征向量分別作為列向量組成特征向量矩陣 Wnxk;
- 計(jì)算 XnewW,即將數(shù)據(jù)集 Xnew 投影到選取的特征向量上,這樣就得到了我們需要的已經(jīng)降維的數(shù)據(jù)集 XnewW。

最小誤差理論降維原理
而最小誤差則是使得平均投影代價(jià)最小的線性投影,這一過程中,我們則需要找到的是平方錯(cuò)誤評(píng)價(jià)函數(shù) J0(x0) 等參數(shù)。
主成分分析(PCA)代碼實(shí)現(xiàn)

關(guān)于 PCA 算法的代碼如下:
from __future__ import print_function
from sklearn import datasets
import matplotlib.pyplot as plt
import matplotlib.cm as cmx
import matplotlib.colors as colors
import numpy as np
%matplotlib inline
def shuffle_data(X, y, seed=None):
if seed:
np.random.seed(seed)
idx = np.arange(X.shape[0])
np.random.shuffle(idx)
return X[idx], y[idx]
# 正規(guī)化數(shù)據(jù)集 X
def normalize(X, axis=-1, p=2):
lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis))
lp_norm[lp_norm == 0] = 1
return X / np.expand_dims(lp_norm, axis)
# 標(biāo)準(zhǔn)化數(shù)據(jù)集 X
def standardize(X):
X_std = np.zeros(X.shape)
mean = X.mean(axis=0)
std = X.std(axis=0)
# 做除法運(yùn)算時(shí)請(qǐng)永遠(yuǎn)記住分母不能等于 0 的情形
# X_std = (X - X.mean(axis=0)) / X.std(axis=0)
for col in range(np.shape(X)[1]):
if std[col]:
X_std[:, col] = (X_std[:, col] - mean[col]) / std[col]
return X_std
# 劃分?jǐn)?shù)據(jù)集為訓(xùn)練集和測(cè)試集
def train_test_split(X, y, test_size=0.2, shuffle=True, seed=None):
if shuffle:
X, y = shuffle_data(X, y, seed)
n_train_samples = int(X.shape[0] * (1-test_size))
x_train, x_test = X[:n_train_samples], X[n_train_samples:]
y_train, y_test = y[:n_train_samples], y[n_train_samples:]
return x_train, x_test, y_train, y_test
# 計(jì)算矩陣 X 的協(xié)方差矩陣
def calculate_covariance_matrix(X, Y=np.empty((0,0))):
if not Y.any():
Y = X
n_samples = np.shape(X)[0]
covariance_matrix = (1 / (n_samples-1)) * (X - X.mean(axis=0)).T.dot(Y - Y.mean(axis=0))
return np.array(covariance_matrix, dtype=float)
# 計(jì)算數(shù)據(jù)集 X 每列的方差
def calculate_variance(X):
n_samples = np.shape(X)[0]
variance = (1 / n_samples) * np.diag((X - X.mean(axis=0)).T.dot(X - X.mean(axis=0)))
return variance
# 計(jì)算數(shù)據(jù)集 X 每列的標(biāo)準(zhǔn)差
def calculate_std_dev(X):
std_dev = np.sqrt(calculate_variance(X))
return std_dev
# 計(jì)算相關(guān)系數(shù)矩陣
def calculate_correlation_matrix(X, Y=np.empty([0])):
# 先計(jì)算協(xié)方差矩陣
covariance_matrix = calculate_covariance_matrix(X, Y)
# 計(jì)算 X, Y 的標(biāo)準(zhǔn)差
std_dev_X = np.expand_dims(calculate_std_dev(X), 1)
std_dev_y = np.expand_dims(calculate_std_dev(Y), 1)
correlation_matrix = np.divide(covariance_matrix, std_dev_X.dot(std_dev_y.T))
return np.array(correlation_matrix, dtype=float)
class PCA():
"""
主成份分析算法 PCA,非監(jiān)督學(xué)習(xí)算法.
"""
def __init__(self):
self.eigen_values = None
self.eigen_vectors = None
self.k = 2
def transform(self, X):
"""
將原始數(shù)據(jù)集 X 通過 PCA 進(jìn)行降維
"""
covariance = calculate_covariance_matrix(X)
# 求解特征值和特征向量
self.eigen_values, self.eigen_vectors = np.linalg.eig(covariance)
# 將特征值從大到小進(jìn)行排序,注意特征向量是按列排的,即 self.eigen_vectors 第 k 列是 self.eigen_values 中第 k 個(gè)特征值對(duì)應(yīng)的特征向量
idx = self.eigen_values.argsort()[::-1]
eigenvalues = self.eigen_values[idx][:self.k]
eigenvectors = self.eigen_vectors[:, idx][:, :self.k]
# 將原始數(shù)據(jù)集 X 映射到低維空間
X_transformed = X.dot(eigenvectors)
return X_transformed
def main():
# Load the dataset
data = datasets.load_iris()
X = data.data
y = data.target
# 將數(shù)據(jù)集 X 映射到低維空間
X_trans = PCA().transform(X)
x1 = X_trans[:, 0]
x2 = X_trans[:, 1]
cmap = plt.get_cmap('viridis')
colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]
class_distr = []
# Plot the different class distributions
for i, l in enumerate(np.unique(y)):
_x1 = x1[y == l]
_x2 = x2[y == l]
_y = y[y == l]
class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))
# Add a legend
plt.legend(class_distr, y, loc=1)
# Axis labels
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.show()
if __name__ == "__main__":
main()最終,我們將得到降維結(jié)果如下。其中,如果得到當(dāng)特征數(shù) (D) 遠(yuǎn)大于樣本數(shù) (N) 時(shí),可以使用一點(diǎn)小技巧實(shí)現(xiàn) PCA 算法的復(fù)雜度轉(zhuǎn)換。

PCA 降維算法展示
當(dāng)然,這一算法雖然經(jīng)典且較為常用,其不足之處也非常明顯。它可以很好的解除線性相關(guān),但是面對(duì)高階相關(guān)性時(shí),效果則較差;同時(shí),PCA 實(shí)現(xiàn)的前提是假設(shè)數(shù)據(jù)各主特征是分布在正交方向上,因此對(duì)于在非正交方向上存在幾個(gè)方差較大的方向,PCA 的效果也會(huì)大打折扣。
其它降維算法及代碼地址
1.KPCA(kernel PCA)
KPCA 是核技術(shù)與 PCA 結(jié)合的產(chǎn)物,它與 PCA 主要差別在于計(jì)算協(xié)方差矩陣時(shí)使用了核函數(shù),即是經(jīng)過核函數(shù)映射之后的協(xié)方差矩陣。
引入核函數(shù)可以很好的解決非線性數(shù)據(jù)映射問題。kPCA 可以將非線性數(shù)據(jù)映射到高維空間,在高維空間下使用標(biāo)準(zhǔn) PCA 將其映射到另一個(gè)低維空間。

KPCA 降維算法展示
# coding:utf-8
# 實(shí)現(xiàn)KPCA
from sklearn.datasets import load_iris
from sklearn.decomposition import KernelPCA
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial.distance import pdist, squareform
'''
author: heucoder
email: 812860165@qq.com
date: 2019.6.13
'''
def sigmoid(x, coef = 0.25):
x = np.dot(x, x.T)
return np.tanh(coef*x+1)
def linear(x):
x = np.dot(x, x.T)
return x
def rbf(x, gamma = 15):
sq_dists = pdist(x, 'sqeuclidean')
mat_sq_dists = squareform(sq_dists)
return np.exp(-gamma*mat_sq_dists)
def kpca(data, n_dims=2, kernel = rbf):
'''
:param data: (n_samples, n_features)
:param n_dims: target n_dims
:param kernel: kernel functions
:return: (n_samples, n_dims)
'''
K = kernel(data)
#
N = K.shape[0]
one_n = np.ones((N, N)) / N
K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n)
#
eig_values, eig_vector = np.linalg.eig(K)
idx = eig_values.argsort()[::-1]
eigval = eig_values[idx][:n_dims]
eigvector = eig_vector[:, idx][:, :n_dims]
print(eigval)
eigval = eigval**(1/2)
vi = eigvector/eigval.reshape(-1,n_dims)
data_n = np.dot(K, vi)
return data_n
if __name__ == "__main__":
data = load_iris().data
Y = load_iris().target
data_1 = kpca(data, kernel=rbf)
sklearn_kpca = KernelPCA(n_components=2, kernel="rbf", gamma=15)
data_2 = sklearn_kpca.fit_transform(data)
plt.figure(figsize=(8,4))
plt.subplot(121)
plt.title("my_KPCA")
plt.scatter(data_1[:, 0], data_1[:, 1], c = Y)
plt.subplot(122)
plt.title("sklearn_KPCA")
plt.scatter(data_2[:, 0], data_2[:, 1], c = Y)
plt.show()2.LDA(Linear Discriminant Analysis)
LDA 是一種可作為特征抽取的技術(shù),其目標(biāo)是向最大化類間差異,最小化類內(nèi)差異的方向投影,以利于分類等任務(wù)即將不同類的樣本有效的分開。LDA 可以提高數(shù)據(jù)分析過程中的計(jì)算效率,對(duì)于未能正則化的模型,可以降低維度災(zāi)難帶來的過擬合。

LDA 降維算法展示
#coding:utf-8
import numpy as np
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
'''
author: heucoder
email: 812860165@qq.com
date: 2019.6.13
'''
def lda(data, target, n_dim):
'''
:param data: (n_samples, n_features)
:param target: data class
:param n_dim: target dimension
:return: (n_samples, n_dims)
'''
clusters = np.unique(target)
if n_dim > len(clusters)-1:
print("K is too much")
print("please input again")
exit(0)
#within_class scatter matrix
Sw = np.zeros((data.shape[1],data.shape[1]))
for i in clusters:
datai = data[target == i]
datai = datai-datai.mean(0)
Swi = np.mat(datai).T*np.mat(datai)
Sw += Swi
#between_class scatter matrix
SB = np.zeros((data.shape[1],data.shape[1]))
u = data.mean(0) #所有樣本的平均值
for i in clusters:
Ni = data[target == i].shape[0]
ui = data[target == i].mean(0) #某個(gè)類別的平均值
SBi = Ni*np.mat(ui - u).T*np.mat(ui - u)
SB += SBi
S = np.linalg.inv(Sw)*SB
eigVals,eigVects = np.linalg.eig(S) #求特征值,特征向量
eigValInd = np.argsort(eigVals)
eigValInd = eigValInd[:(-n_dim-1):-1]
w = eigVects[:,eigValInd]
data_ndim = np.dot(data, w)
return data_ndim
if __name__ == '__main__':
iris = load_iris()
X = iris.data
Y = iris.target
data_1 = lda(X, Y, 2)
data_2 = LinearDiscriminantAnalysis(n_components=2).fit_transform(X, Y)
plt.figure(figsize=(8,4))
plt.subplot(121)
plt.title("my_LDA")
plt.scatter(data_1[:, 0], data_1[:, 1], c = Y)
plt.subplot(122)
plt.title("sklearn_LDA")
plt.scatter(data_2[:, 0], data_2[:, 1], c = Y)
plt.savefig("LDA.png")
plt.show()3.MDS(multidimensional scaling)
MDS 即多維標(biāo)度分析,它是一種通過直觀空間圖表示研究對(duì)象的感知和偏好的傳統(tǒng)降維方法。該方法會(huì)計(jì)算任意兩個(gè)樣本點(diǎn)之間的距離,使得投影到低維空間之后能夠保持這種相對(duì)距離從而實(shí)現(xiàn)投影。
由于 sklearn 中 MDS 是采用迭代優(yōu)化方式,下面實(shí)現(xiàn)了迭代和非迭代的兩種。

MDS 降維算法展示
4.ISOMAP
Isomap 即等度量映射算法,該算法可以很好地解決 MDS 算法在非線性結(jié)構(gòu)數(shù)據(jù)集上的弊端。
MDS 算法是保持降維后的樣本間距離不變,Isomap 算法則引進(jìn)了鄰域圖,樣本只與其相鄰的樣本連接,計(jì)算出近鄰點(diǎn)之間的距離,然后在此基礎(chǔ)上進(jìn)行降維保距。

ISOMAP 降維算法展示
# coding:utf-8
import numpy as np
from sklearn.datasets import make_s_curve
import matplotlib.pyplot as plt
from sklearn.manifold import Isomap
from mpl_toolkits.mplot3d import Axes3D
def floyd(D,n_neighbors=15):
Max = np.max(D)*1000
n1,n2 = D.shape
k = n_neighbors
D1 = np.ones((n1,n1))*Max
D_arg = np.argsort(D,axis=1)
for i in range(n1):
D1[i,D_arg[i,0:k+1]] = D[i,D_arg[i,0:k+1]]
for k in range(n1):
for i in range(n1):
for j in range(n1):
if D1[i,k]+D1[k,j]<D1[i,j]:
D1[i,j] = D1[i,k]+D1[k,j]
return D1
def cal_pairwise_dist(x):
'''計(jì)算pairwise 距離, x是matrix
(a-b)^2 = a^2 + b^2 - 2*a*b
'''
sum_x = np.sum(np.square(x), 1)
dist = np.add(np.add(-2 * np.dot(x, x.T), sum_x).T, sum_x)
#返回任意兩個(gè)點(diǎn)之間距離的平方
return dist
def my_mds(dist, n_dims):
# dist (n_samples, n_samples)
dist = dist**2
n = dist.shape[0]
T1 = np.ones((n,n))*np.sum(dist)/n**2
T2 = np.sum(dist, axis = 1)/n
T3 = np.sum(dist, axis = 0)/n
B = -(T1 - T2 - T3 + dist)/2
eig_val, eig_vector = np.linalg.eig(B)
index_ = np.argsort(-eig_val)[:n_dims]
picked_eig_val = eig_val[index_].real
picked_eig_vector = eig_vector[:, index_]
return picked_eig_vector*picked_eig_val**(0.5)
def my_Isomap(data,n=2,n_neighbors=30):
D = cal_pairwise_dist(data)
D[D < 0] = 0
D = D**0.5
D_floyd=floyd(D, n_neighbors)
data_n = my_mds(D_floyd, n_dims=n)
return data_n
def scatter_3d(X, y):
fig = plt.figure(figsize=(6, 5))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.hot)
ax.view_init(10, -70)
ax.set_xlabel("$x_1$", fontsize=18)
ax.set_ylabel("$x_2$", fontsize=18)
ax.set_zlabel("$x_3$", fontsize=18)
plt.show()
if __name__ == '__main__':
X, Y = make_s_curve(n_samples = 500,
noise = 0.1,
random_state = 42)
data_1 = my_Isomap(X, 2, 10)
data_2 = Isomap(n_neighbors = 10, n_components = 2).fit_transform(X)
plt.figure(figsize=(8,4))
plt.subplot(121)
plt.title("my_Isomap")
plt.scatter(data_1[:, 0], data_1[:, 1], c = Y)
plt.subplot(122)
plt.title("sklearn_Isomap")
plt.scatter(data_2[:, 0], data_2[:, 1], c = Y)
plt.savefig("Isomap1.png")
plt.show()5.LLE(locally linear embedding)
LLE 即局部線性嵌入算法,它是一種非線性降維算法。該算法核心思想為每個(gè)點(diǎn)可以由與它相鄰的多個(gè)點(diǎn)的線性組合而近似重構(gòu),然后將高維數(shù)據(jù)投影到低維空間中,使其保持?jǐn)?shù)據(jù)點(diǎn)之間的局部線性重構(gòu)關(guān)系,即有相同的重構(gòu)系數(shù)。在處理所謂的流形降維的時(shí)候,效果比 PCA 要好很多。

LLE 降維算法展示
# coding:utf-8
import numpy as np
from sklearn.datasets import make_s_curve
import matplotlib.pyplot as plt
from sklearn.manifold import LocallyLinearEmbedding
from mpl_toolkits.mplot3d import Axes3D
'''
author: heucoder
email: 812860165@qq.com
date: 2019.6.13
'''
def make_swiss_roll(n_samples=100, noise=0.0, random_state=None):
#Generate a swiss roll dataset.
t = 1.5 * np.pi * (1 + 2 * np.random.rand(1, n_samples))
x = t * np.cos(t)
y = 83 * np.random.rand(1, n_samples)
z = t * np.sin(t)
X = np.concatenate((x, y, z))
X += noise * np.random.randn(3, n_samples)
X = X.T
t = np.squeeze(t)
return X, t
def cal_pairwise_dist(x):
'''計(jì)算pairwise 距離, x是matrix
(a-b)^2 = a^2 + b^2 - 2*a*b
'''
sum_x = np.sum(np.square(x), 1)
dist = np.add(np.add(-2 * np.dot(x, x.T), sum_x).T, sum_x)
#返回任意兩個(gè)點(diǎn)之間距離的平方
return dist
def get_n_neighbors(data, n_neighbors = 10):
'''
:param data: (n_samples, n_features)
:param n_neighbors: n nearest neighbors
:return: neighbors indexs
'''
dist = cal_pairwise_dist(data)
dist[dist < 0] = 0
dist = dist**0.5
n = dist.shape[0]
N = np.zeros((n, n_neighbors))
for i in range(n):
index_ = np.argsort(dist[i])[1:n_neighbors+1]
N[i] = N[i] + index_
return N.astype(np.int32)
def lle(data, n_dims = 2, n_neighbors = 10):
'''
:param data:(n_samples, n_features)
:param n_dims: target n_dims
:param n_neighbors: n nearest neighbors
:return: (n_samples, n_dims)
'''
N = get_n_neighbors(data, n_neighbors)
n, D = data.shape
# prevent Si to small
if n_neighbors > D:
tol = 1e-3
else:
tol = 0
# calculate W
W = np.zeros((n_neighbors, n))
I = np.ones((n_neighbors, 1))
for i in range(n):
Xi = np.tile(data[i], (n_neighbors, 1)).T
Ni = data[N[i]].T
Si = np.dot((Xi-Ni).T, (Xi-Ni))
# magic and why????
Si = Si+np.eye(n_neighbors)*tol*np.trace(Si)
Si_inv = np.linalg.pinv(Si)
wi = (np.dot(Si_inv, I))/(np.dot(np.dot(I.T, Si_inv), I)[0,0])
W[:, i] = wi[:,0]
print("Xi.shape", Xi.shape)
print("Ni.shape", Ni.shape)
print("Si.shape", Si.shape)
W_y = np.zeros((n, n))
for i in range(n):
index = N[i]
for j in range(n_neighbors):
W_y[index[j],i] = W[j,i]
I_y = np.eye(n)
M = np.dot((I_y - W_y), (I_y - W_y).T)
eig_val, eig_vector = np.linalg.eig(M)
index_ = np.argsort(np.abs(eig_val))[1:n_dims+1]
print("index_", index_)
Y = eig_vector[:, index_]
return Y
if __name__ == '__main__':
# X, Y = make_s_curve(n_samples = 500,
# noise = 0.1,
# random_state = 42)
X, Y = make_swiss_roll(n_samples = 500, noise=0.1, random_state=42)
data_1 =lle(X, n_neighbors = 30)
print(data_1.shape)
data_2 = LocallyLinearEmbedding(n_components=2, n_neighbors = 30).fit_transform(X)
plt.figure(figsize=(8,4))
plt.subplot(121)
plt.title("my_LLE")
plt.scatter(data_1[:, 0], data_1[:, 1], c = Y)
plt.subplot(122)
plt.title("sklearn_LLE")
plt.scatter(data_2[:, 0], data_2[:, 1], c = Y)
plt.savefig("LLE.png")
plt.show()6.t-SNE
t-SNE 也是一種非線性降維算法,非常適用于高維數(shù)據(jù)降維到 2 維或者 3 維進(jìn)行可視化。它是一種以數(shù)據(jù)原有的趨勢(shì)為基礎(chǔ),重建其在低緯度(二維或三維)下數(shù)據(jù)趨勢(shì)的無監(jiān)督機(jī)器學(xué)習(xí)算法。
下面的結(jié)果展示參考了源代碼,同時(shí)也可用 tensorflow 實(shí)現(xiàn)(無需手動(dòng)更新參數(shù))。

t-SNE 降維算法展示
7.LE(Laplacian Eigenmaps)
LE 即拉普拉斯特征映射,它與 LLE 算法有些相似,也是以局部的角度去構(gòu)建數(shù)據(jù)之間的關(guān)系。它的直觀思想是希望相互間有關(guān)系的點(diǎn)(在圖中相連的點(diǎn))在降維后的空間中盡可能的靠近;以這種方式,可以得到一個(gè)能反映流形的幾何結(jié)構(gòu)的解。

LE 降維算法展示
# coding:utf-8
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from mpl_toolkits.mplot3d import Axes3D
'''
author: heucoder
email: 812860165@qq.com
date: 2019.6.13
'''
def make_swiss_roll(n_samples=100, noise=0.0, random_state=None):
#Generate a swiss roll dataset.
t = 1.5 * np.pi * (1 + 2 * np.random.rand(1, n_samples))
x = t * np.cos(t)
y = 83 * np.random.rand(1, n_samples)
z = t * np.sin(t)
X = np.concatenate((x, y, z))
X += noise * np.random.randn(3, n_samples)
X = X.T
t = np.squeeze(t)
return X, t
def rbf(dist, t = 1.0):
'''
rbf kernel function
'''
return np.exp(-(dist/t))
def cal_pairwise_dist(x):
'''計(jì)算pairwise 距離, x是matrix
(a-b)^2 = a^2 + b^2 - 2*a*b
'''
sum_x = np.sum(np.square(x), 1)
dist = np.add(np.add(-2 * np.dot(x, x.T), sum_x).T, sum_x)
#返回任意兩個(gè)點(diǎn)之間距離的平方
return dist
def cal_rbf_dist(data, n_neighbors = 10, t = 1):
dist = cal_pairwise_dist(data)
dist[dist < 0] = 0
n = dist.shape[0]
rbf_dist = rbf(dist, t)
W = np.zeros((n, n))
for i in range(n):
index_ = np.argsort(dist[i])[1:1+n_neighbors]
W[i, index_] = rbf_dist[i, index_]
W[index_, i] = rbf_dist[index_, i]
return W
def le(data,
n_dims = 2,
n_neighbors = 5, t = 1.0):
'''
:param data: (n_samples, n_features)
:param n_dims: target dim
:param n_neighbors: k nearest neighbors
:param t: a param for rbf
:return:
'''
N = data.shape[0]
W = cal_rbf_dist(data, n_neighbors, t)
D = np.zeros_like(W)
for i in range(N):
D[i,i] = np.sum(W[i])
D_inv = np.linalg.inv(D)
L = D - W
eig_val, eig_vec = np.linalg.eig(np.dot(D_inv, L))
sort_index_ = np.argsort(eig_val)
eig_val = eig_val[sort_index_]
print("eig_val[:10]: ", eig_val[:10])
j = 0
while eig_val[j] < 1e-6:
j+=1
print("j: ", j)
sort_index_ = sort_index_[j:j+n_dims]
eig_val_picked = eig_val[j:j+n_dims]
print(eig_val_picked)
eig_vec_picked = eig_vec[:, sort_index_]
# print("L: ")
# print(np.dot(np.dot(eig_vec_picked.T, L), eig_vec_picked))
# print("D: ")
# D not equal I ???
print(np.dot(np.dot(eig_vec_picked.T, D), eig_vec_picked))
X_ndim = eig_vec_picked
return X_ndim
if __name__ == '__main__':
# X, Y = make_swiss_roll(n_samples = 2000)
# X_ndim = le(X, n_neighbors = 5, t = 20)
#
# fig = plt.figure(figsize=(12,6))
# ax1 = fig.add_subplot(121, projection='3d')
# ax1.scatter(X[:, 0], X[:, 1], X[:, 2], c = Y)
#
# ax2 = fig.add_subplot(122)
# ax2.scatter(X_ndim[:, 0], X_ndim[:, 1], c = Y)
# plt.show()
X = load_digits().data
y = load_digits().target
dist = cal_pairwise_dist(X)
max_dist = np.max(dist)
print("max_dist", max_dist)
X_ndim = le(X, n_neighbors = 20, t = max_dist*0.1)
plt.scatter(X_ndim[:, 0], X_ndim[:, 1], c = y)
plt.savefig("LE2.png")
plt.show()8.LPP(Locality Preserving Projections)
LPP 即局部保留投影算法,其思路和拉普拉斯特征映射類似,核心思想為通過最好的保持一個(gè)數(shù)據(jù)集的鄰居結(jié)構(gòu)信息來構(gòu)造投影映射,但 LPP 不同于 LE 的直接得到投影結(jié)果,它需要求解投影矩陣。

LPP 降維算法展示
# coding:utf-8
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from mpl_toolkits.mplot3d import Axes3D
from sklearn.datasets import load_digits, load_iris
'''
author: heucoder
email: 812860165@qq.com
date: 2019.6.13
'''
def make_swiss_roll(n_samples=100, noise=0.0, random_state=None):
#Generate a swiss roll dataset.
t = 1.5 * np.pi * (1 + 2 * np.random.rand(1, n_samples))
x = t * np.cos(t)
y = 83 * np.random.rand(1, n_samples)
z = t * np.sin(t)
X = np.concatenate((x, y, z))
X += noise * np.random.randn(3, n_samples)
X = X.T
t = np.squeeze(t)
return X, t
def rbf(dist, t = 1.0):
'''
rbf kernel function
'''
return np.exp(-(dist/t))
def cal_pairwise_dist(x):
'''計(jì)算pairwise 距離, x是matrix
(a-b)^2 = a^2 + b^2 - 2*a*b
'''
sum_x = np.sum(np.square(x), 1)
dist = np.add(np.add(-2 * np.dot(x, x.T), sum_x).T, sum_x)
#返回任意兩個(gè)點(diǎn)之間距離的平方
return dist
def cal_rbf_dist(data, n_neighbors = 10, t = 1):
dist = cal_pairwise_dist(data)
dist[dist < 0] = 0
n = dist.shape[0]
rbf_dist = rbf(dist, t)
W = np.zeros((n, n))
for i in range(n):
index_ = np.argsort(dist[i])[1:1 + n_neighbors]
W[i, index_] = rbf_dist[i, index_]
W[index_, i] = rbf_dist[index_, i]
return W
def lpp(data,
n_dims = 2,
n_neighbors = 30, t = 1.0):
'''
:param data: (n_samples, n_features)
:param n_dims: target dim
:param n_neighbors: k nearest neighbors
:param t: a param for rbf
:return:
'''
N = data.shape[0]
W = cal_rbf_dist(data, n_neighbors, t)
D = np.zeros_like(W)
for i in range(N):
D[i,i] = np.sum(W[i])
L = D - W
XDXT = np.dot(np.dot(data.T, D), data)
XLXT = np.dot(np.dot(data.T, L), data)
eig_val, eig_vec = np.linalg.eig(np.dot(np.linalg.pinv(XDXT), XLXT))
sort_index_ = np.argsort(np.abs(eig_val))
eig_val = eig_val[sort_index_]
print("eig_val[:10]", eig_val[:10])
j = 0
while eig_val[j] < 1e-6:
j+=1
print("j: ", j)
sort_index_ = sort_index_[j:j+n_dims]
# print(sort_index_)
eig_val_picked = eig_val[j:j+n_dims]
print(eig_val_picked)
eig_vec_picked = eig_vec[:, sort_index_]
data_ndim = np.dot(data, eig_vec_picked)
return data_ndim
if __name__ == '__main__':
X = load_digits().data
y = load_digits().target
# X, y = make_swiss_roll(n_samples = 1000)
dist = cal_pairwise_dist(X)
max_dist = np.max(dist)
print("max_dist", max_dist)
data_2d = lpp(X, n_neighbors = 5, t = 0.01*max_dist)
data_2 = PCA(n_components=2).fit_transform(X)
plt.figure(figsize=(12,6))
plt.subplot(121)
plt.title("LPP")
plt.scatter(data_2d[:, 0], data_2d[:, 1], c = y)
plt.subplot(122)
plt.title("PCA")
plt.scatter(data_2[:, 0], data_2[:, 1], c = y)
plt.show()以上就是Python實(shí)現(xiàn)12種降維算法的示例代碼的詳細(xì)內(nèi)容,更多關(guān)于Python降維算法的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python實(shí)現(xiàn)的十進(jìn)制小數(shù)與二進(jìn)制小數(shù)相互轉(zhuǎn)換功能
這篇文章主要介紹了Python實(shí)現(xiàn)的十進(jìn)制小數(shù)與二進(jìn)制小數(shù)相互轉(zhuǎn)換功能,結(jié)合具體實(shí)例形式詳細(xì)分析了二進(jìn)制與十進(jìn)制相互轉(zhuǎn)換的原理及Python相關(guān)實(shí)現(xiàn)技巧,需要的朋友可以參考下2017-10-10
利用Seaborn繪制20個(gè)精美的pairplot圖
本文記錄的使用seaborn繪制pairplot圖,主要是用來顯示兩兩變量之間的關(guān)系(線性或非線性,有無較為明顯的相關(guān)關(guān)系等),感興趣的可以了解一下2022-07-07
Python實(shí)現(xiàn)基于多線程、多用戶的FTP服務(wù)器與客戶端功能完整實(shí)例
這篇文章主要介紹了Python實(shí)現(xiàn)基于多線程、多用戶的FTP服務(wù)器與客戶端功能,結(jié)合完整實(shí)例形式分析了Python多線程、多用戶FTP服務(wù)器端與客戶端相關(guān)實(shí)現(xiàn)技巧與注意事項(xiàng),需要的朋友可以參考下2017-08-08
python實(shí)現(xiàn)對(duì)任意大小圖片均勻切割的示例
今天小編就為大家分享一篇python實(shí)現(xiàn)對(duì)任意大小圖片均勻切割的示例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-12-12
Python TCP全連接攻擊中SockStress全連接攻擊詳解
Sock Stress 全連接攻擊屬于TCP全連接攻擊,因?yàn)樾枰⒁淮瓮暾腡CP三次握手,該攻擊的關(guān)鍵點(diǎn)就在于,攻擊主機(jī)將windows窗口緩沖設(shè)置為0,實(shí)現(xiàn)的拒絕服務(wù)2022-10-10

