詳解如何基于Pyecharts繪制常見的直角坐標系圖表
更新時間:2022年04月27日 16:13:19 作者:小黃同學(xué)AC
pyecharts是基于前端可視化框架echarts的Python可視化庫,下面這篇文章主要給大家介紹了關(guān)于如何基于Pyecharts繪制常見的直角坐標系圖表的相關(guān)資料,文中通過實例代碼介紹的非常詳細,需要的朋友可以參考下
1.直方圖
# -*-coding:utf-8 -*- # @Time : 21:02 # @Author: 黃榮津 # @File : 1.直方圖.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 73] bar = (Bar() .add_xaxis(x_data) .add_yaxis('', y_data) ) bar.render("1.直方圖.html")
2.折線圖
# -*-coding:utf-8 -*- # @Time : 21:19 # @Author: 黃榮津 # @File : 2.折線圖.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 73] line = (Line() .add_xaxis(x_data) .add_yaxis('', y_data) ) line.render("2.折線圖.html")
3.箱形圖
# -*-coding:utf-8 -*- # @Time : 21:25 # @Author: 黃榮津 # @File : 3.箱型圖.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [[random.randint(100, 150) for i in range(20)] for item in x_data] class Box: pass box =( Boxplot() .add_xaxis(x_data) .add_yaxis("", (y_data)) ) box.render("3.箱型圖.html")
4.散點圖
# -*-coding:utf-8 -*- # @Time : 21:58 # @Author: 黃榮津 # @File : 4.散點圖.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 73] Scatter=(Scatter() .add_xaxis(x_data) .add_yaxis('', y_data) ) Scatter.render("4.散點圖.html")
5.帶漣漪效果散點圖
# -*-coding:utf-8 -*- # @Time : 22:23 # @Author: 黃榮津 # @File : 5.帶漣漪效果散點圖.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 73] effectScatter = (EffectScatter() .add_xaxis(x_data) .add_yaxis('', y_data) ) effectScatter.render("5.帶漣漪效果散點圖.html")
6.k線圖
# -*-coding:utf-8 -*- # @Time : 22:27 # @Author: 黃榮津 # @File : 6.k線圖.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" date_list = ["2022/4/{}".format(i + 1) for i in range(30)] y_data = [[random.randint(200, 350) for i in range(20)] for item in date_list] kline = (Kline() .add_xaxis(date_list) .add_yaxis('', y_data) ) kline.render("6.k線圖.html")
7.熱力圖
# -*-coding:utf-8 -*- # @Time : 22:36 # @Author: 黃榮津 # @File : 7.熱力圖.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" data = [[i, j, random.randint(0, 100)] for i in range(24) for j in range(7)] hour_list = [str(i) for i in range(24)] week_list = ['周日', '周一', '周二', '周三', '周四', '周五', '周六'] heat = (HeatMap() .add_xaxis(hour_list) .add_yaxis("", week_list, data) ) heat.render("7.熱力圖.html")
8.象型圖
# -*-coding:utf-8 -*- # @Time : 22:46 # @Author: 黃榮津 # @File : 8.象型圖.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 33] pictorialBar = (PictorialBar() .add_xaxis(x_data) .add_yaxis('', y_data) ) pictorialBar.render("8.象型圖.html")
9.層疊圖
# -*-coding:utf-8 -*- # @Time : 23:02 # @Author: 黃榮津 # @File : 9.層疊圖.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 73] bar = (Bar() .add_xaxis(x_data) .add_yaxis('', y_data) ) line = (Line() .add_xaxis(x_data) .add_yaxis('', y_data) ) overlap = bar.overlap(line) #利用第一個圖表為基礎(chǔ),往后的數(shù)據(jù)都將會畫在第一個圖表上 overlap.render("9.層疊圖.html")
總結(jié)
到此這篇關(guān)于如何基于Pyecharts繪制常見的直角坐標系圖表的文章就介紹到這了,更多相關(guān)Pyecharts繪制直角坐標系圖表內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
您可能感興趣的文章:
- Python數(shù)據(jù)可視化 pyecharts實現(xiàn)各種統(tǒng)計圖表過程詳解
- python的pyecharts繪制各種圖表詳細(附代碼)
- 一文教你用Pyecharts做交互圖表
- Python數(shù)據(jù)可視化之基于pyecharts實現(xiàn)的地理圖表的繪制
- Python+pyecharts繪制交互式可視化圖表
- Python使用pyecharts控件繪制圖表
- 教你用pyecharts繪制各種圖表案例(效果+代碼)
- Python繪制地理圖表可視化神器pyecharts
- Python可視化神器pyecharts繪制地理圖表
- Python可視化神器pyecharts之繪制地理圖表練習(xí)
- Pyecharts之特殊圖表的實現(xiàn)示例
相關(guān)文章
TensorFlow實現(xiàn)Batch Normalization
這篇文章主要為大家詳細介紹了TensorFlow實現(xiàn)Batch Normalization,具有一定的參考價值,感興趣的小伙伴們可以參考一下2018-03-03