python人工智能tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN
學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)已經(jīng)有一段時(shí)間,從普通的BP神經(jīng)網(wǎng)絡(luò)到LSTM長(zhǎng)短期記憶網(wǎng)絡(luò)都有一定的了解,但是從未系統(tǒng)的把整個(gè)神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)記錄下來(lái),我相信這些小記錄可以幫助我更加深刻的理解神經(jīng)網(wǎng)絡(luò)。
簡(jiǎn)介
卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)是一類包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks),是深度學(xué)習(xí)(deep learning)的代表算法之一。
其主要結(jié)構(gòu)分為輸入層、隱含層、輸出層。
在tensorboard中,其結(jié)構(gòu)如圖所示:

對(duì)于卷積神經(jīng)網(wǎng)絡(luò)而言,其輸入層、輸出層與平常的卷積神經(jīng)網(wǎng)絡(luò)無(wú)異。
但其隱含層可以分為三個(gè)部分,分別是卷積層(對(duì)輸入數(shù)據(jù)進(jìn)行特征提?。?、池化層(特征選擇和信息過(guò)濾)、全連接層(等價(jià)于傳統(tǒng)前饋神經(jīng)網(wǎng)絡(luò)中的隱含層)。
隱含層介紹
1、卷積層
卷積將輸入圖像放進(jìn)一組卷積濾波器,每個(gè)濾波器激活圖像中的某些特征。
假設(shè)一副黑白圖像為5*5的大小,像這樣:

利用如下卷積器進(jìn)行卷積:

卷積結(jié)果為:

卷積過(guò)程可以提取特征,卷積神經(jīng)網(wǎng)絡(luò)是根據(jù)特征來(lái)完成分類的。
在tensorflow中,卷積層的重要函數(shù)是:
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
其中:
1、input是輸入量,shape是[batch, height, width, channels]。;
2、filter是使用的卷積核;
3、strides是步長(zhǎng),其格式[1,step,step,1],step指的是在圖像卷積的每一維的步長(zhǎng);
4、padding:string類型的量,只能是"SAME","VALID"其中之一,SAME表示卷積前后圖像面積不變。
2、池化層
池化層用于在卷積層進(jìn)行特征提取后,輸出的特征圖會(huì)被傳遞至池化層進(jìn)行特征選擇和信息過(guò)濾。
常見的池化是最大池化,最大池化指的是取出這些被卷積后的數(shù)據(jù)的最大值,就是取出其最大特征。
假設(shè)其池化窗口為2X2,步長(zhǎng)為2。
原圖像為:

池化后為:

在tensorflow中,池化層的重要函數(shù)是:
tf.nn.max_pool(value, ksize, strides, padding, data_format, name)
1、value:池化層的輸入,一般池化層接在卷積層后面,shape是[batch, height, width, channels]。
2、ksize:池化窗口的大小,取一個(gè)四維向量,一般是[1, in_height, in_width, 1]。
3、strides:和卷積類似,窗口在每一個(gè)維度上滑動(dòng)的步長(zhǎng),也是[1, stride,stride, 1]。
4、padding:和卷積類似,可以取’VALID’ 或者’SAME’。
這是tensorboard中卷積層和池化層的連接結(jié)構(gòu):

3、全連接層
全連接層與普通神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)相同,如圖所示:

具體實(shí)現(xiàn)代碼
卷積層、池化層與全連接層實(shí)現(xiàn)代碼
def conv2d(x,W,step,pad): #用于進(jìn)行卷積,x為輸入值,w為卷積核
return tf.nn.conv2d(x,W,strides = [1,step,step,1],padding = pad)
def max_pool_2X2(x,step,pad): #用于池化,x為輸入值,step為步數(shù)
return tf.nn.max_pool(x,ksize = [1,2,2,1],strides= [1,step,step,1],padding = pad)
def weight_variable(shape): #用于獲得W
initial = tf.truncated_normal(shape,stddev = 0.1) #從截?cái)嗟恼龖B(tài)分布中輸出隨機(jī)值
return tf.Variable(initial)
def bias_variable(shape): #獲得bias
initial = tf.constant(0.1,shape=shape) #生成普通值
return tf.Variable(initial)
def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):
#用于添加全連接層
layer_name = 'layer_%s'%n_layer
with tf.name_scope(layer_name):
with tf.name_scope("Weights"):
Weights = tf.Variable(tf.truncated_normal([in_size,out_size],stddev = 0.1),name = "Weights")
tf.summary.histogram(layer_name+"/weights",Weights)
with tf.name_scope("biases"):
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")
tf.summary.histogram(layer_name+"/biases",biases)
with tf.name_scope("Wx_plus_b"):
Wx_plus_b = tf.matmul(inputs,Weights) + biases
tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
if activation_function == None :
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
print(activation_function)
outputs = tf.nn.dropout(outputs,keep_prob)
tf.summary.histogram(layer_name+"/outputs",outputs)
return outputs
def add_cnn_layer(inputs, in_z_dim, out_z_dim, n_layer, conv_step = 1, pool_step = 2, padding = "SAME"):
#用于生成卷積層和池化層
layer_name = 'layer_%s'%n_layer
with tf.name_scope(layer_name):
with tf.name_scope("Weights"):
W_conv = weight_variable([5,5,in_z_dim,out_z_dim])
with tf.name_scope("biases"):
b_conv = bias_variable([out_z_dim])
with tf.name_scope("conv"):
#卷積層
h_conv = tf.nn.relu(conv2d(inputs, W_conv, conv_step, padding)+b_conv)
with tf.name_scope("pooling"):
#池化層
h_pool = max_pool_2X2(h_conv, pool_step, padding)
return h_pool
全部代碼
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot = "true")
def conv2d(x,W,step,pad):
return tf.nn.conv2d(x,W,strides = [1,step,step,1],padding = pad)
def max_pool_2X2(x,step,pad):
return tf.nn.max_pool(x,ksize = [1,2,2,1],strides= [1,step,step,1],padding = pad)
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev = 0.1) #從截?cái)嗟恼龖B(tài)分布中輸出隨機(jī)值
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1,shape=shape) #生成普通值
return tf.Variable(initial)
def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):
layer_name = 'layer_%s'%n_layer
with tf.name_scope(layer_name):
with tf.name_scope("Weights"):
Weights = tf.Variable(tf.truncated_normal([in_size,out_size],stddev = 0.1),name = "Weights")
tf.summary.histogram(layer_name+"/weights",Weights)
with tf.name_scope("biases"):
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")
tf.summary.histogram(layer_name+"/biases",biases)
with tf.name_scope("Wx_plus_b"):
Wx_plus_b = tf.matmul(inputs,Weights) + biases
tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
if activation_function == None :
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
print(activation_function)
outputs = tf.nn.dropout(outputs,keep_prob)
tf.summary.histogram(layer_name+"/outputs",outputs)
return outputs
def add_cnn_layer(inputs, in_z_dim, out_z_dim, n_layer, conv_step = 1, pool_step = 2, padding = "SAME"):
layer_name = 'layer_%s'%n_layer
with tf.name_scope(layer_name):
with tf.name_scope("Weights"):
W_conv = weight_variable([5,5,in_z_dim,out_z_dim])
with tf.name_scope("biases"):
b_conv = bias_variable([out_z_dim])
with tf.name_scope("conv"):
h_conv = tf.nn.relu(conv2d(inputs, W_conv, conv_step, padding)+b_conv)
with tf.name_scope("pooling"):
h_pool = max_pool_2X2(h_conv, pool_step, padding)
return h_pool
def compute_accuracy(x_data,y_data):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:x_data,keep_prob:1})
correct_prediction = tf.equal(tf.arg_max(y_data,1),tf.arg_max(y_pre,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict = {xs:batch_xs,ys:batch_ys,keep_prob:1})
return result
keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32,[None,784])
ys = tf.placeholder(tf.float32,[None,10])
x_image = tf.reshape(xs,[-1,28,28,1])
h_pool1 = add_cnn_layer(x_image, in_z_dim = 1, out_z_dim = 32, n_layer = "cnn1",)
h_pool2 = add_cnn_layer(h_pool1, in_z_dim = 32, out_z_dim = 64, n_layer = "cnn2",)
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1_drop = add_layer(h_pool2_flat, 7*7*64, 1024, "layer1", activation_function = tf.nn.relu, keep_prob = keep_prob)
prediction = add_layer(h_fc1_drop, 1024, 10, "layer2", activation_function = tf.nn.softmax, keep_prob = 1)
with tf.name_scope("loss"):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=ys,logits = prediction),name = 'loss')
tf.summary.scalar("loss",loss)
train = tf.train.AdamOptimizer(1e-4).minimize(loss)
init = tf.initialize_all_variables()
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init)
write = tf.summary.FileWriter("logs/",sess.graph)
for i in range(5000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train,feed_dict = {xs:batch_xs,ys:batch_ys,keep_prob:0.5})
if i % 100 == 0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))
以上就是python人工智能tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的詳細(xì)內(nèi)容,更多關(guān)于tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
- Python實(shí)現(xiàn)用networkx繪制MultiDiGraph
- Python使用Networkx實(shí)現(xiàn)復(fù)雜的人物關(guān)系圖
- Python中的Networkx的基本使用
- Python中卷積神經(jīng)網(wǎng)絡(luò)(CNN)入門教程分分享
- Python?CNN卷積神經(jīng)網(wǎng)絡(luò)實(shí)戰(zhàn)教程深入講解
- python機(jī)器學(xué)習(xí)GCN圖卷積神經(jīng)網(wǎng)絡(luò)原理解析
- Python卷積神經(jīng)網(wǎng)絡(luò)圖片分類框架詳解分析
- python如何實(shí)現(xiàn)convolution neural network卷積神經(jīng)網(wǎng)絡(luò)算法
相關(guān)文章
Python 數(shù)據(jù)結(jié)構(gòu)之樹的概念詳解
這篇文章主要介紹了數(shù)據(jù)結(jié)構(gòu)之樹的概念詳解,本篇文章通過(guò)簡(jiǎn)要的案例,講解了該項(xiàng)技術(shù)的了解與使用,以下就是詳細(xì)內(nèi)容,需要的朋友可以參考下2021-09-09
Python的Django框架中URLconf相關(guān)的一些技巧整理
這篇文章主要介紹了Python的Django框架中URLconf相關(guān)的一些技巧整理,包括視圖配置和debug的示例等,需要的朋友可以參考下2015-07-07
Python調(diào)用shell cmd方法代碼示例解析
這篇文章主要介紹了Python調(diào)用shell cmd方法代碼示例解析,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-06-06
Python中xml和json格式相互轉(zhuǎn)換操作示例
這篇文章主要介紹了Python中xml和json格式相互轉(zhuǎn)換操作,結(jié)合實(shí)例形式分析了xmltodict庫(kù)的安裝及xml格式與json格式數(shù)據(jù)相互轉(zhuǎn)換操作技巧,需要的朋友可以參考下2018-12-12
Numpy中的ravel_multi_index函數(shù)用法說(shuō)明
這篇文章主要介紹了Numpy中的ravel_multi_index函數(shù)用法說(shuō)明,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-05-05

