python人工智能tensorflow函數(shù)tf.assign使用方法
參數(shù)數(shù)量及其作用
該函數(shù)共有五個參數(shù),分別是:
- 被賦值的變量 ref
- 要分配給變量的值 value、
- 是否驗證形狀 validate_shape
- 是否進(jìn)行鎖定保護(hù) use_locking
- 名稱 name
def assign(ref, value, validate_shape=None, use_locking=None, name=None) Update 'ref' by assigning 'value' to it. This operation outputs a Tensor that holds the new value of 'ref' after the value has been assigned. This makes it easier to chain operations that need to use the reset value. Args: ref: A mutable `Tensor`. Should be from a `Variable` node. May be uninitialized. value: A `Tensor`. Must have the same type as `ref`. The value to be assigned to the variable. validate_shape: An optional `bool`. Defaults to `True`. If true, the operation will validate that the shape of 'value' matches the shape of the Tensor being assigned to. If false, 'ref' will take on the shape of 'value'. use_locking: An optional `bool`. Defaults to `True`. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A `Tensor` that will hold the new value of 'ref' after the assignment has completed.
該函數(shù)的作用是將一個要分配給變量的值value賦予被賦值的變量ref,用于tensorflow各個參數(shù)的變量賦值。
例子
該例子將舉例如何進(jìn)行變量之間的數(shù)據(jù)賦值和如何進(jìn)行集合間的數(shù)據(jù)賦值。
import tensorflow as tf; import numpy as np; c1 = ['c1', tf.GraphKeys.GLOBAL_VARIABLES] c2 = ['c2', tf.GraphKeys.GLOBAL_VARIABLES] #常量初始化器 v1_cons = tf.get_variable('v1_cons',dtype = tf.float32,shape=[1,4], initializer=tf.constant_initializer(), collections = c1) v2_cons = tf.get_variable('v2_cons',dtype = tf.float32,shape=[1,4], initializer=tf.constant_initializer(9), collections = c1) #正太分布初始化器 v1_nor = tf.get_variable('v1_nor',dtype = tf.float32, shape=[1,4], initializer=tf.random_normal_initializer(mean=0, stddev=5), collections = c2) v2_nor = tf.get_variable('v2_nor',dtype = tf.float32, shape=[1,4], initializer=tf.random_normal_initializer(mean=0, stddev=5), collections = c2) assign1 = tf.assign(v1_cons,v2_cons) #將v2_cons賦予v1_cons c1_get = tf.get_collection('c1') #獲得c1集合 c2_get = tf.get_collection('c2') #獲得c2集合 assign2 = [tf.assign(cg1,cg2) for cg1,cg2 in zip(c1_get,c2_get) ] #將c2賦予c1 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print("v1_cons:",sess.run(v1_cons)) print("v2_cons:",sess.run(v2_cons)) print(sess.run(assign1)) #顯示賦值后的結(jié)果 print("將v2_cons賦予v1_cons:",sess.run(v1_cons)) print("c1_get_collection:",sess.run(c1_get)) print("c2_get_collection:",sess.run(c2_get)) print(sess.run(assign2)) #顯示賦值后的結(jié)果 print("將c2賦予c1:",sess.run(c1_get))
其輸出為:
v1_cons: [[0. 0. 0. 0.]] v2_cons: [[9. 9. 9. 9.]] [[9. 9. 9. 9.]] 將v2_cons賦予v1_cons: [[9. 9. 9. 9.]] c1_get_collection: [array([[9., 9., 9., 9.]], dtype=float32), array([[9., 9., 9., 9.]], dtype=float32)] c2_get_collection: [array([[-3.9746916, -7.5332146, 2.4480317, -1.3282107]], dtype=float32), array([[10.687443 , 3.6653206, 1.7079141, -4.524155 ]], dtype=float32)] [array([[-3.9746916, -7.5332146, 2.4480317, -1.3282107]], dtype=float32), array([[10.687443 , 3.6653206, 1.7079141, -4.524155 ]], dtype=float32)] 將c2賦予c1: [array([[-3.9746916, -7.5332146, 2.4480317, -1.3282107]], dtype=float32), array([[10.687443 , 3.6653206, 1.7079141, -4.524155 ]], dtype=float32)]
以上就是python人工智能tensorflow函數(shù)tf.assign使用方法的詳細(xì)內(nèi)容,更多關(guān)于tensorflow函數(shù)tf.assign的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python寫的一個定時重跑獲取數(shù)據(jù)庫數(shù)據(jù)
本文給大家分享基于python寫的一個定時重跑獲取數(shù)據(jù)庫數(shù)據(jù)的方法,非常不錯,具有參考借鑒價值,需要的朋友參考下2016-12-12echarts動態(tài)獲取Django數(shù)據(jù)的實現(xiàn)示例
本文主要介紹了echarts動態(tài)獲取Django數(shù)據(jù)的實現(xiàn)示例,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2022-08-08使用Django框架中ORM系統(tǒng)實現(xiàn)對數(shù)據(jù)庫數(shù)據(jù)增刪改查
這篇文章主要介紹了使用Django的ORM實現(xiàn)對數(shù)據(jù)庫數(shù)據(jù)增刪改查方法,文中附含詳細(xì)示例代碼以及過程詳解,有需要的朋友可以借鑒參考下2021-09-09Python中實現(xiàn)一行拆多行和多行并一行的示例代碼
這篇文章主要介紹了Python中實現(xiàn)一行拆多行和多行并一行的示例代碼,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-09-09python爬蟲將js轉(zhuǎn)化成json實現(xiàn)示例
這篇文章主要為大家介紹了python爬蟲將js轉(zhuǎn)化成json實現(xiàn)示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-05-05