欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python神經(jīng)網(wǎng)絡(luò)InceptionV3模型復(fù)現(xiàn)詳解

 更新時(shí)間:2022年05月06日 15:00:46   作者:Bubbliiiing  
這篇文章主要為大家介紹了python神經(jīng)網(wǎng)絡(luò)InceptionV3模型復(fù)現(xiàn)詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪<BR>

學(xué)習(xí)前言

Inception系列的結(jié)構(gòu)和其它的前向神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)不太一樣,每一層的內(nèi)容不是直直向下的,而是分了很多的塊

什么是InceptionV3模型

InceptionV3模型是谷歌Inception系列里面的第三代模型,其模型結(jié)構(gòu)與InceptionV2模型放在了同一篇論文里,其實(shí)二者模型結(jié)構(gòu)差距不大,相比于其它神經(jīng)網(wǎng)絡(luò)模型,Inception網(wǎng)絡(luò)最大的特

點(diǎn)在于將神經(jīng)網(wǎng)絡(luò)層與層之間的卷積運(yùn)算進(jìn)行了拓展。

如VGG,AlexNet網(wǎng)絡(luò),它就是一直卷積下來(lái)的,一層接著一層;

ResNet則是創(chuàng)新性的引入了殘差網(wǎng)絡(luò)的概念,使得靠前若干層的某一層數(shù)據(jù)輸出直接跳過(guò)多層引入到后面數(shù)據(jù)層的輸入部分,后面的特征層的內(nèi)容會(huì)有一部分由其前面的某一層線性貢獻(xiàn)。

而Inception網(wǎng)絡(luò)則是采用不同大小的卷積核,使得存在不同大小的感受野,最后實(shí)現(xiàn)拼接達(dá)到不同尺度特征的融合。

對(duì)于InceptionV3而言,其網(wǎng)絡(luò)中存在著如下的結(jié)構(gòu)。

這個(gè)結(jié)構(gòu)使用不同大小的卷積核對(duì)輸入進(jìn)行卷積(這個(gè)結(jié)構(gòu)主要在代碼中的block1使用)。

還存在著這樣的結(jié)構(gòu),利用1x7的卷積和7x1的卷積代替7x7的卷積,這樣可以只使用約(1x7 + 7x1) / (7x7) = 28.6%的計(jì)算開(kāi)銷;

利用1x3的卷積和3x1的卷積代替3x3的卷積,這樣可以只使用約(1x3 + 3x1) / (3x3) = 67%的計(jì)算開(kāi)銷。

下圖利用1x7的卷積和7x1的卷積代替7x7的卷積(這個(gè)結(jié)構(gòu)主要在代碼中的block2使用)。

下圖利用1x3的卷積和3x1的卷積代替3x3的卷積(這個(gè)結(jié)構(gòu)主要在代碼中的block3使用)。

InceptionV3網(wǎng)絡(luò)部分實(shí)現(xiàn)代碼

我一共將InceptionV3劃分為3個(gè)block,對(duì)應(yīng)著35x35、17x17,8x8維度大小的圖像。每個(gè)block中間有許多的part,對(duì)應(yīng)著不同的特征層深度,用于特征提取。

#-------------------------------------------------------------#
#   InceptionV3的網(wǎng)絡(luò)部分
#-------------------------------------------------------------#
from __future__ import print_function
from __future__ import absolute_import
import warnings
import numpy as np
from keras.models import Model
from keras import layers
from keras.layers import Activation,Dense,Input,BatchNormalization,Conv2D,MaxPooling2D,AveragePooling2D
from keras.layers import GlobalAveragePooling2D,GlobalMaxPooling2D
from keras.engine.topology import get_source_inputs
from keras.utils.layer_utils import convert_all_kernels_in_model
from keras.utils.data_utils import get_file
from keras import backend as K
from keras.applications.imagenet_utils import decode_predictions
from keras.preprocessing import image
def conv2d_bn(x,
              filters,
              num_row,
              num_col,
              padding='same',
              strides=(1, 1),
              name=None):
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None
    x = Conv2D(
        filters, (num_row, num_col),
        strides=strides,
        padding=padding,
        use_bias=False,
        name=conv_name)(x)
    x = BatchNormalization(scale=False, name=bn_name)(x)
    x = Activation('relu', name=name)(x)
    return x
def InceptionV3(input_shape=[299,299,3],
                classes=1000):
    img_input = Input(shape=input_shape)
    x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
    x = conv2d_bn(x, 32, 3, 3, padding='valid')
    x = conv2d_bn(x, 64, 3, 3)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = conv2d_bn(x, 80, 1, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, 3, padding='valid')
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)
    #--------------------------------#
    #   Block1 35x35
    #--------------------------------#
    # Block1 part1
    # 35 x 35 x 192 -> 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)
    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)
    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=3,
        name='mixed0')
    # Block1 part2
    # 35 x 35 x 256 -> 35 x 35 x 288
    branch1x1 = conv2d_bn(x, 64, 1, 1)
    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)
    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=3,
        name='mixed1')
    # Block1 part3
    # 35 x 35 x 288 -> 35 x 35 x 288
    branch1x1 = conv2d_bn(x, 64, 1, 1)
    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)
    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=3,
        name='mixed2')
    #--------------------------------#
    #   Block2 17x17
    #--------------------------------#
    # Block2 part1
    # 35 x 35 x 288 -> 17 x 17 x 768
    branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')
    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(
        branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid')
    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch3x3dbl, branch_pool], axis=3, name='mixed3')
    # Block2 part2
    # 17 x 17 x 768 -> 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)
    branch7x7 = conv2d_bn(x, 128, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)
    branch7x7dbl = conv2d_bn(x, 128, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=3,
        name='mixed4')
    # Block2 part3 and part4
    # 17 x 17 x 768 -> 17 x 17 x 768 -> 17 x 17 x 768
    for i in range(2):
        branch1x1 = conv2d_bn(x, 192, 1, 1)
        branch7x7 = conv2d_bn(x, 160, 1, 1)
        branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
        branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)
        branch7x7dbl = conv2d_bn(x, 160, 1, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool],
            axis=3,
            name='mixed' + str(5 + i))
    # Block2 part5
    # 17 x 17 x 768 -> 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)
    branch7x7 = conv2d_bn(x, 192, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)
    branch7x7dbl = conv2d_bn(x, 192, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=3,
        name='mixed7')
    #--------------------------------#
    #   Block3 8x8
    #--------------------------------#
    # Block3 part1
    # 17 x 17 x 768 -> 8 x 8 x 1280
    branch3x3 = conv2d_bn(x, 192, 1, 1)
    branch3x3 = conv2d_bn(branch3x3, 320, 3, 3,
                          strides=(2, 2), padding='valid')
    branch7x7x3 = conv2d_bn(x, 192, 1, 1)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
    branch7x7x3 = conv2d_bn(
        branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid')
    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch7x7x3, branch_pool], axis=3, name='mixed8')
    # Block3 part2 part3
    # 8 x 8 x 1280 -> 8 x 8 x 2048 -> 8 x 8 x 2048
    for i in range(2):
        branch1x1 = conv2d_bn(x, 320, 1, 1)
        branch3x3 = conv2d_bn(x, 384, 1, 1)
        branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
        branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
        branch3x3 = layers.concatenate(
            [branch3x3_1, branch3x3_2], axis=3, name='mixed9_' + str(i))
        branch3x3dbl = conv2d_bn(x, 448, 1, 1)
        branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
        branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
        branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
        branch3x3dbl = layers.concatenate(
            [branch3x3dbl_1, branch3x3dbl_2], axis=3)
        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool],
            axis=3,
            name='mixed' + str(9 + i))
    # 平均池化后全連接。
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
    inputs = img_input
    model = Model(inputs, x, name='inception_v3')
    return model

圖片預(yù)測(cè)

建立網(wǎng)絡(luò)后,可以用以下的代碼進(jìn)行預(yù)測(cè)。

def preprocess_input(x):
    x /= 255.
    x -= 0.5
    x *= 2.
    return x
if __name__ == '__main__':
    model = InceptionV3()
    model.load_weights("inception_v3_weights_tf_dim_ordering_tf_kernels.h5")
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    preds = model.predict(x)
    print('Predicted:', decode_predictions(preds))

預(yù)測(cè)所需的已經(jīng)訓(xùn)練好的InceptionV3模型可以在github下載非常方便。

預(yù)測(cè)結(jié)果為:

Predicted: [[('n02504458', 'African_elephant', 0.50874853), ('n01871265', 'tusker', 0.19524273), ('n02504013', 'Indian_elephant', 0.1566972), ('n01917289', 'brain_coral', 0.0008956835), ('n01695060', 'Komodo_dragon', 0.0008260256)]]

這里我推薦一個(gè)很不錯(cuò)的講InceptionV3結(jié)構(gòu)的深度神經(jīng)網(wǎng)絡(luò)Google Inception Net-V3結(jié)構(gòu)圖里面有每一層的結(jié)構(gòu)圖,非常清晰。

以上就是python神經(jīng)網(wǎng)絡(luò)InceptionV3模型復(fù)現(xiàn)詳解的詳細(xì)內(nèi)容,更多關(guān)于python神經(jīng)網(wǎng)絡(luò)InceptionV3模型的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!

相關(guān)文章

  • Python實(shí)現(xiàn)登陸文件驗(yàn)證方法

    Python實(shí)現(xiàn)登陸文件驗(yàn)證方法

    本篇文章中我們給大家分享了關(guān)于Python實(shí)現(xiàn)登陸文件驗(yàn)證的方法和技巧,有興趣的朋友們參考學(xué)習(xí)下。
    2018-10-10
  • python2利用wxpython生成投影界面工具的圖文詳解

    python2利用wxpython生成投影界面工具的圖文詳解

    這篇文章主要介紹了python2利用wxpython生成投影界面工具的圖文詳解,本文通過(guò)實(shí)例圖文相結(jié)合給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下
    2021-04-04
  • Python3 venv搭建輕量級(jí)虛擬環(huán)境的步驟(圖文)

    Python3 venv搭建輕量級(jí)虛擬環(huán)境的步驟(圖文)

    這篇文章主要介紹了Python3 venv搭建輕量級(jí)虛擬環(huán)境的步驟(圖文),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2019-08-08
  • Python PaddlePaddle機(jī)器學(xué)習(xí)之求解線性模型

    Python PaddlePaddle機(jī)器學(xué)習(xí)之求解線性模型

    這篇文章主要介紹了Python PaddlePaddle機(jī)器學(xué)習(xí)之求解線性模型,文章圍繞主題展開(kāi)詳細(xì)的內(nèi)容介紹,具有一定參考價(jià)值,需要的小伙伴可以參考一下
    2022-08-08
  • Pycharm中無(wú)法使用pip安裝的包問(wèn)題解決方案

    Pycharm中無(wú)法使用pip安裝的包問(wèn)題解決方案

    本文主要介紹了Pycharm中無(wú)法使用pip安裝的包問(wèn)題解決方案,在終端通過(guò)pip裝好包以后,在pycharm中導(dǎo)入包時(shí),依然會(huì)報(bào)錯(cuò),下面就來(lái)介紹一下解決方法
    2023-09-09
  • Python使用低通濾波器模糊圖像功能實(shí)現(xiàn)

    Python使用低通濾波器模糊圖像功能實(shí)現(xiàn)

    這篇文章主要介紹了Python使用低通濾波器模糊圖像,我們介紹了多種不同類型的濾波器核與卷積操作,使用 scipy.ndimage 模塊中的濾波器模糊圖像,利用 scipy.fftpack 模塊的 fft2() 函數(shù)實(shí)現(xiàn)高斯模糊,介紹了scipy.signal模塊的彩色圖像頻域卷積,需要的朋友可以參考下
    2023-03-03
  • python實(shí)現(xiàn)DNS正向查詢、反向查詢的例子

    python實(shí)現(xiàn)DNS正向查詢、反向查詢的例子

    這篇文章主要介紹了python實(shí)現(xiàn)DNS正向查詢、反向查詢的例子,需要的朋友可以參考下
    2014-04-04
  • python實(shí)現(xiàn)json文件的增刪改操作方法

    python實(shí)現(xiàn)json文件的增刪改操作方法

    這篇文章主要介紹了python實(shí)現(xiàn)json文件的增刪改操作,本文通過(guò)示例代碼給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下
    2023-06-06
  • Python Dict找出value大于某值或key大于某值的所有項(xiàng)方式

    Python Dict找出value大于某值或key大于某值的所有項(xiàng)方式

    這篇文章主要介紹了Python Dict找出value大于某值或key大于某值的所有項(xiàng)方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2020-06-06
  • Python如何使用struct.unpack處理二進(jìn)制文件

    Python如何使用struct.unpack處理二進(jìn)制文件

    這篇文章主要介紹了Python如何使用struct.unpack處理二進(jìn)制文件問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2024-02-02

最新評(píng)論