手把手教你Python抓取數(shù)據(jù)并可視化
前言
大家好,這次寫(xiě)作的目的是為了加深對(duì)數(shù)據(jù)可視化pyecharts的認(rèn)識(shí),也想和大家分享一下。如果下面文章中有錯(cuò)誤的地方還請(qǐng)指正,哈哈哈!??!
本次主要用到的第三方庫(kù):
- requests
- pandas
- pyecharts

之所以數(shù)據(jù)可視化選用pyecharts,是因?yàn)樗胸S富的精美圖表,地圖,也可輕松集成至 Flask,Django 等主流 Web 框架中,并且在html渲染網(wǎng)頁(yè)時(shí)把圖片保存下來(lái)(這里好像截屏就可以了,),任君挑選?。?!
這次的數(shù)據(jù)采集是從招聘網(wǎng)址上抓取到的python招聘崗位信息,嗯……其實(shí)這抓取到的數(shù)據(jù)有點(diǎn)少(只有1200條左右,也沒(méi)辦法,崗位太少了…),所以在后面做可視化圖表的時(shí)候會(huì)導(dǎo)致不好看,駭。本來(lái)也考慮過(guò)用java(數(shù)據(jù)1萬(wàn)+)的數(shù)據(jù)來(lái)做測(cè)試的,但是想到寫(xiě)的是python,所以也就只能將就用這個(gè)數(shù)據(jù)了,當(dāng)然如果有感興趣的朋友,你們可以用java,前端這些崗位的數(shù)據(jù)來(lái)做測(cè)試,下面提供的數(shù)據(jù)抓取方法稍微改一下就可以抓取其它崗位了。
好了,廢話(huà)不多說(shuō),直接開(kāi)始吧!
一、數(shù)據(jù)抓取篇
1.簡(jiǎn)單的構(gòu)建反爬措施
這里為大家介紹一個(gè)很好用的網(wǎng)站,可以幫助我們?cè)趯?xiě)爬蟲(chóng)時(shí)快速構(gòu)建請(qǐng)求頭、cookie這些。但是這個(gè)網(wǎng)站也不知為什么,反正在訪(fǎng)問(wèn)時(shí)也經(jīng)常訪(fǎng)問(wèn)不了!額……,介紹下它的使用吧!首先,我們只需要根據(jù)下面圖片上步驟一樣。

完成之后,我們就復(fù)制好了請(qǐng)求頭里面的內(nèi)容了,然后打開(kāi)網(wǎng)址https://curlconverter.com/進(jìn)入后直接在輸入框里Ctrl+v粘貼即可。然后就會(huì)在下面解析出內(nèi)容,我們直接復(fù)制就完成了,快速,簡(jiǎn)單,哈哈哈。

2.解析數(shù)據(jù)
這里我們請(qǐng)求網(wǎng)址得到的數(shù)據(jù)它并沒(méi)有在html元素標(biāo)簽里面,所以就不能用lxml,css選擇器等這些來(lái)解析數(shù)據(jù)。這里我們用re正則來(lái)解析數(shù)據(jù),得到的數(shù)據(jù)看到起來(lái)好像字典類(lèi)型,但是它并不是,所以我們還需要用json來(lái)把它轉(zhuǎn)化成字典類(lèi)型的數(shù)據(jù)方便我們提取。


這里用json轉(zhuǎn)化為字典類(lèi)型的數(shù)據(jù)后,不好查看時(shí),可以用pprint來(lái)打印查看。
import pprint pprint.pprint(parse_data_dict)
3.完整代碼
import requests
import re
import json
import csv
import time
from random import random
from fake_useragent import UserAgent
def spider_python(key_word):
headers = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9',
'Accept-Language': 'zh-CN,zh;q=0.9',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Pragma': 'no-cache',
'Sec-Fetch-Dest': 'document',
'Sec-Fetch-Mode': 'navigate',
'Sec-Fetch-Site': 'same-origin',
'Sec-Fetch-User': '?1',
'Upgrade-Insecure-Requests': '1',
'User-Agent': UserAgent().Chrome,
'sec-ch-ua': '" Not A;Brand";v="99", "Chromium";v="100", "Google Chrome";v="100"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
}
params = {
'lang': 'c',
'postchannel': '0000',
'workyear': '99',
'cotype': '99',
'degreefrom': '99',
'jobterm': '99',
'companysize': '99',
'ord_field': '0',
'dibiaoid': '0',
'line': '',
'welfare': '',
}
save_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()).replace(' ', '_').replace(':','_')
file_path = f'./testDataPython-{save_time}.csv'
f_csv = open(file_path, mode='w', encoding='utf-8', newline='')
fieldnames = ['公司名字', '職位名字', '薪資', '工作地點(diǎn)',
'招聘要求', '公司待遇','招聘更新時(shí)間', '招聘發(fā)布時(shí)間',
'公司人數(shù)', '公司類(lèi)型', 'companyind_text', 'job_href', 'company_href']
dict_write = csv.DictWriter(f_csv, fieldnames=fieldnames)
dict_write.writeheader()
page = 0 #頁(yè)數(shù)
error_time = 0 #在判斷 職位名字中是否沒(méi)有關(guān)鍵字的次數(shù),這里定義出現(xiàn)200次時(shí),while循環(huán)結(jié)束
# (因?yàn)樵谒阉鲘徫幻謺r(shí)(如:搜索python),會(huì)在網(wǎng)站20多頁(yè)時(shí)就沒(méi)有關(guān)于python的崗位了,但是仍然有其它的崗位出現(xiàn),所以這里就需要if判斷,使其while循環(huán)結(jié)束)
flag = True
while flag:
page += 1
print(f'第{page}抓取中……')
try:
time.sleep(random()*3) #這里隨機(jī)休眠一下,簡(jiǎn)單反爬處理,反正我們用的是單線(xiàn)程爬取,也不差那一點(diǎn)時(shí)間是吧
url='這里你們自己構(gòu)建url吧,從上面的圖片應(yīng)該能看出,我寫(xiě)出來(lái)的話(huà)實(shí)在是不行,過(guò)不了審核,難受?。?!'
###這里還是要添加cookies的好,我們要偽裝好不是?防止反爬,如果你用上面提供的方法,也就很快的構(gòu)建出cookies。
response = requests.get(url=url,params=params, headers=headers)
except:
print(f'\033[31m第{page}請(qǐng)求異常!033[0m')
flag = False
parse_data = re.findall('"engine_jds":(.*?),"jobid_count"',response.text)
parse_data_dict = json.loads(parse_data[0])
# import pprint
# pprint.pprint(parse_data_dict)
# exit()
for i in parse_data_dict:
###在這里要處理下異常,因?yàn)樵谂廊《囗?yè)時(shí),可能是網(wǎng)站某些原因會(huì)導(dǎo)致這里的結(jié)構(gòu)變化
try:
companyind_text = i['companyind_text']
except Exception as e:
print(f'\033[31m異常:{e}033[0m')
companyind_text = None
dic = {
'公司名字': i['company_name'],
'職位名字': i['job_name'],
'薪資': i['providesalary_text'],
'工作地點(diǎn)': i['workarea_text'],
'招聘要求': ' '.join(i['attribute_text']),
'公司待遇': i['jobwelf'],
'招聘更新時(shí)間': i['updatedate'],
'招聘發(fā)布時(shí)間': i['issuedate'],
'公司人數(shù)': i['companysize_text'],
'公司類(lèi)型': i['companytype_text'],
'companyind_text': companyind_text,
'job_href': i['job_href'],
'company_href': i['company_href'],
}
if 'Python' in dic['職位名字'] or 'python' in dic['職位名字']:
dict_write.writerow(dic)
print(dic['職位名字'], '——保存完畢!')
else:
error_time += 1
if error_time == 200:
flag = False
print('抓取完成!')
f_csv.close()
if __name__ == '__main__':
key_word = 'python'
# key_word = 'java' ##這里不能輸入中文,網(wǎng)址做了url字體加密,簡(jiǎn)單的方法就是直接從網(wǎng)頁(yè)url里面復(fù)制下來(lái)用(如:前端)
# key_word = '%25E5%2589%258D%25E7%25AB%25AF' #前端
spider_python(key_word)
二、數(shù)據(jù)可視化篇
1.數(shù)據(jù)可視化庫(kù)選用
本次數(shù)據(jù)可視化選用的是pyecharts第三方庫(kù),它制作圖表是多么的強(qiáng)大與精美?。?!想要對(duì)它進(jìn)行一些簡(jiǎn)單地了解話(huà)可以前往這篇博文:
http://www.dbjr.com.cn/article/247122.htm
安裝: pip install pyecharts
2.案例實(shí)戰(zhàn)
本次要對(duì)薪資、工作地點(diǎn)、招聘要求里面的經(jīng)驗(yàn)與學(xué)歷進(jìn)行數(shù)據(jù)處理并可視化。

(1).柱狀圖Bar
按住鼠標(biāo)中間滑輪或鼠標(biāo)左鍵可進(jìn)行調(diào)控。

import pandas as pd
from pyecharts import options as opts
python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv')
python_data['工作地點(diǎn)'] = [i.split('-')[0] for i in python_data['工作地點(diǎn)']]
city = python_data['工作地點(diǎn)'].value_counts()
###柱狀圖
from pyecharts.charts import Bar
c = (
Bar()
.add_xaxis(city.index.tolist()) #城市列表數(shù)據(jù)項(xiàng)
.add_yaxis("Python", city.values.tolist())#城市對(duì)應(yīng)的崗位數(shù)量列表數(shù)據(jù)項(xiàng)
.set_global_opts(
title_opts=opts.TitleOpts(title="Python招聘崗位所在城市分布情況"),
datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")],
xaxis_opts=opts.AxisOpts(name='城市'), # 設(shè)置x軸名字屬性
yaxis_opts=opts.AxisOpts(name='崗位數(shù)量'), # 設(shè)置y軸名字屬性
)
.render("bar_datazoom_both.html")
)
(2).地圖Map
省份
這里對(duì)所在省份進(jìn)行可視化。

import pandas as pd
import copy
from pyecharts import options as opts
python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv')
python_data_deepcopy = copy.deepcopy(python_data) #深復(fù)制一份數(shù)據(jù)
python_data['工作地點(diǎn)'] = [i.split('-')[0] for i in python_data['工作地點(diǎn)']]
city = python_data['工作地點(diǎn)'].value_counts()
city_list = [list(ct) for ct in city.items()]
def province_city():
'''這是從接口里爬取的數(shù)據(jù)(不太準(zhǔn),但是誤差也可以忽略不計(jì)?。?''
area_data = {}
with open('./中國(guó)省份_城市.txt', mode='r', encoding='utf-8') as f:
for line in f:
line = line.strip().split('_')
area_data[line[0]] = line[1].split(',')
province_data = []
for ct in city_list:
for k, v in area_data.items():
for i in v:
if ct[0] in i:
ct[0] = k
province_data.append(ct)
area_data_deepcopy = copy.deepcopy(area_data)
for k in area_data_deepcopy.keys():
area_data_deepcopy[k] = 0
for i in province_data:
if i[0] in area_data_deepcopy.keys():
area_data_deepcopy[i[0]] = area_data_deepcopy[i[0]] +i[1]
province_data = [[k,v]for k,v in area_data_deepcopy.items()]
best = max(area_data_deepcopy.values())
return province_data,best
province_data,best = province_city()
#地圖_中國(guó)地圖(帶省份)Map-VisualMap(連續(xù)型)
c2 = (
Map()
.add( "Python",province_data, "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="Python招聘崗位——全國(guó)分布情況"),
visualmap_opts=opts.VisualMapOpts(max_=int(best / 2)),
)
.render("map_china.html")
)
這是 中國(guó)省份_城市.txt 里面的內(nèi)容,通過(guò)[接口]抓取到的中國(guó)地區(qū)信息。

源碼:
import requests
import json
header = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.81 Safari/537.36",
}
response = requests.get('https://j.i8tq.com/weather2020/search/city.js',headers=header)
result = json.loads(response.text[len('var city_data ='):])
print(result)
each_province_data = {}
f = open('./中國(guó)省份_城市.txt',mode='w',encoding='utf-8')
for k,v in result.items():
province = k
if k in ['上海', '北京', '天津', '重慶']:
city = ','.join(list(v[k].keys()))
else:
city = ','.join(list(v.keys()))
f.write(f'{province}_{city}\n')
each_province_data[province] = city
f.close()
print(each_province_data)
城市
這里對(duì)所在城市進(jìn)行可視化。

import pandas as pd
import copy
from pyecharts import options as opts
python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv')
python_data_deepcopy = copy.deepcopy(python_data) #深復(fù)制一份數(shù)據(jù)
python_data['工作地點(diǎn)'] = [i.split('-')[0] for i in python_data['工作地點(diǎn)']]
city = python_data['工作地點(diǎn)'].value_counts()
city_list = [list(ct) for ct in city.items()]
###地圖_中國(guó)地圖(帶城市)——Map-VisualMap(分段型)
from pyecharts.charts import Map
c1 = (
Map(init_opts=opts.InitOpts(width="1244px", height="700px",page_title='Map-中國(guó)地圖(帶城市)', bg_color="#f4f4f4"))
.add(
"Python",
city_list,
"china-cities", #地圖
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Python招聘崗位——全國(guó)分布情況"),
visualmap_opts=opts.VisualMapOpts(max_=city_list[0][1],is_piecewise=True),
)
.render("map_china_cities.html")
)
地區(qū)
這里對(duì)上海地區(qū)可視化。

import pandas as pd
import copy
from pyecharts import options as opts
python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv')
python_data_deepcopy = copy.deepcopy(python_data) #深復(fù)制一份數(shù)據(jù)
shanghai_data = []
sh = shanghai_data.append
for i in python_data_deepcopy['工作地點(diǎn)']:
if '上海' in i:
if len(i.split('-')) > 1:
sh(i.split('-')[1])
shanghai_data = pd.Series(shanghai_data).value_counts()
shanghai_data_list = [list(sh) for sh in shanghai_data.items()]
#上海地圖
c3 = (
Map()
.add("Python", shanghai_data_list, "上海") ###這個(gè)可以更改地區(qū)(如:成都)這里改了的話(huà),上面的數(shù)據(jù)處理也要做相應(yīng)的更改
.set_global_opts(
title_opts=opts.TitleOpts(title="Map-上海地圖"),
visualmap_opts=opts.VisualMapOpts(max_=shanghai_data_list[0][1])
)
.render("map_shanghai.html")
)
(3).餅圖Pie
Pie1

from pyecharts import options as opts
from pyecharts.charts import Pie
import pandas as pd
python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv')
require_list = []
rl = require_list.append
for i in python_data['招聘要求']:
if '經(jīng)驗(yàn)' in i:
rl(i.split(' ')[1])
else:
rl('未知')
python_data['招聘要求'] = require_list
require = python_data['招聘要求'].value_counts()
require_list = [list(ct) for ct in require.items()]
print(require_list)
c = (
Pie()
.add(
"",
require_list,
radius=["40%", "55%"],
label_opts=opts.LabelOpts(
position="outside",
formatter="{a|{a}}{abg|}\n{hr|}\n {b|: }{c} {per|vvxyksv9kd%} ",
background_color="#eee",
border_color="#aaa",
border_width=1,
border_radius=4,
rich={
"a": {"color": "#999", "lineHeight": 22, "align": "center"},
"abg": {
"backgroundColor": "#e3e3e3",
"width": "100%",
"align": "right",
"height": 22,
"borderRadius": [4, 4, 0, 0],
},
"hr": {
"borderColor": "#aaa",
"width": "100%",
"borderWidth": 0.5,
"height": 0,
},
"b": {"fontSize": 16, "lineHeight": 33},
"per": {
"color": "#eee",
"backgroundColor": "#334455",
"padding": [2, 4],
"borderRadius": 2,
},
},
),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="工作經(jīng)驗(yàn)要求"),
legend_opts=opts.LegendOpts(padding=20, pos_left=500),
)
.render("pie_rich_label.html")
)Pie2

from pyecharts import options as opts
from pyecharts.charts import Pie
import pandas as pd
python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv')
xueli_list = []
xl = xueli_list.append
for i in python_data['招聘要求']:
if len(i.split(' ')) == 3:
xl(i.split(' ')[2])
else:
xl('未知')
python_data['招聘要求'] = xueli_list
xueli_require = python_data['招聘要求'].value_counts()
xueli_require_list = [list(ct) for ct in xueli_require.items()]
c = (
Pie()
.add(
"",
xueli_require_list,
radius=["30%", "55%"],
rosetype="area",
)
.set_global_opts(title_opts=opts.TitleOpts(title="學(xué)歷要求"))
.render("pie_rosetype.html")
)
(4).折線(xiàn)圖Line
這里對(duì)薪資情況進(jìn)行可視化。

import pandas as pd
import re
python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv')
sal = python_data['薪資']
xin_zi1 = []
xin_zi2 = []
xin_zi3 = []
xin_zi4 = []
xin_zi5 = []
xin_zi6 = []
for s in sal:
s = str(s)
if '千' in s:
xin_zi1.append(s)
else:
if re.findall('-(.*?)萬(wàn)',s):
s = float(re.findall('-(.*?)萬(wàn)',s)[0])
if 1.0<s<=1.5:
xin_zi2.append(s)
elif 1.5<s<=2.5:
xin_zi3.append(s)
elif 2.5<s<=3.2:
xin_zi4.append(s)
elif 3.2<s<=4.0:
xin_zi5.append(s)
else:
xin_zi6.append(s)
xin_zi = [['<10k',len(xin_zi1)],['10~15k',len(xin_zi2)],['15<25k',len(xin_zi3)],
['25<32k',len(xin_zi4)],['32<40k',len(xin_zi5)],['>40k',len(xin_zi6),]]
import pyecharts.options as opts
from pyecharts.charts import Line
x, y =[i[0] for i in xin_zi],[i[1] for i in xin_zi]
c2 = (
Line()
.add_xaxis(x)
.add_yaxis(
"Python",
y,
markpoint_opts=opts.MarkPointOpts(
data=[opts.MarkPointItem(name="max", coord=[x[2], y[2]], value=y[2])] #name='自定義標(biāo)記點(diǎn)'
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="薪資情況"),
xaxis_opts=opts.AxisOpts(name='薪資范圍'), # 設(shè)置x軸名字屬性
yaxis_opts=opts.AxisOpts(name='數(shù)量'), # 設(shè)置y軸名字屬性
)
.render("line_markpoint_custom.html")
)
(5).組合圖表
最后,將多個(gè)html上的圖表進(jìn)行合并成一個(gè)html圖表。
首先,我們執(zhí)行下面這串格式的代碼(只寫(xiě)了四個(gè)圖表,自己做相應(yīng)添加即可)
import pandas as pd
from pyecharts.charts import Bar,Map,Pie,Line,Page
from pyecharts import options as opts
python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv')
python_data['工作地點(diǎn)'] = [i.split('-')[0] for i in python_data['工作地點(diǎn)']]
city = python_data['工作地點(diǎn)'].value_counts()
city_list = [list(ct) for ct in city.items()]
###柱狀圖
def bar_datazoom_slider() -> Bar:
c = (
Bar()
.add_xaxis(city.index.tolist()) #城市列表數(shù)據(jù)項(xiàng)
.add_yaxis("Python", city.values.tolist())#城市對(duì)應(yīng)的崗位數(shù)量列表數(shù)據(jù)項(xiàng)
.set_global_opts(
title_opts=opts.TitleOpts(title="Python招聘崗位所在城市分布情況"),
datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")],
xaxis_opts=opts.AxisOpts(name='城市'), # 設(shè)置x軸名字屬性
yaxis_opts=opts.AxisOpts(name='崗位數(shù)量'), # 設(shè)置y軸名字屬性
)
)
return c
# 地圖_中國(guó)地圖(帶省份)Map-VisualMap(連續(xù)型)
def map_china() -> Map:
import copy
area_data = {}
with open('./中國(guó)省份_城市.txt', mode='r', encoding='utf-8') as f:
for line in f:
line = line.strip().split('_')
area_data[line[0]] = line[1].split(',')
province_data = []
for ct in city_list:
for k, v in area_data.items():
for i in v:
if ct[0] in i:
ct[0] = k
province_data.append(ct)
area_data_deepcopy = copy.deepcopy(area_data)
for k in area_data_deepcopy.keys():
area_data_deepcopy[k] = 0
for i in province_data:
if i[0] in area_data_deepcopy.keys():
area_data_deepcopy[i[0]] = area_data_deepcopy[i[0]] + i[1]
province_data = [[k, v] for k, v in area_data_deepcopy.items()]
best = max(area_data_deepcopy.values())
c = (
Map()
.add("Python", province_data, "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="Python招聘崗位——全國(guó)分布情況"),
visualmap_opts=opts.VisualMapOpts(max_=int(best / 2)),
)
)
return c
#餅圖
def pie_rich_label() -> Pie:
require_list = []
rl = require_list.append
for i in python_data['招聘要求']:
if '經(jīng)驗(yàn)' in i:
rl(i.split(' ')[1])
else:
rl('未知')
python_data['招聘要求'] = require_list
require = python_data['招聘要求'].value_counts()
require_list = [list(ct) for ct in require.items()]
c = (
Pie()
.add(
"",
require_list,
radius=["40%", "55%"],
label_opts=opts.LabelOpts(
position="outside",
formatter="{a|{a}}{abg|}\n{hr|}\n {b|: }{c} {per|vvxyksv9kd%} ",
background_color="#eee",
border_color="#aaa",
border_width=1,
border_radius=4,
rich={
"a": {"color": "#999", "lineHeight": 22, "align": "center"},
"abg": {
"backgroundColor": "#e3e3e3",
"width": "100%",
"align": "right",
"height": 22,
"borderRadius": [4, 4, 0, 0],
},
"hr": {
"borderColor": "#aaa",
"width": "100%",
"borderWidth": 0.5,
"height": 0,
},
"b": {"fontSize": 16, "lineHeight": 33},
"per": {
"color": "#eee",
"backgroundColor": "#334455",
"padding": [2, 4],
"borderRadius": 2,
},
},
),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="工作經(jīng)驗(yàn)要求"),
legend_opts=opts.LegendOpts(padding=20, pos_left=500),
)
)
return c
#折線(xiàn)圖
def line_markpoint_custom() -> Line:
import re
sal = python_data['薪資']
xin_zi1 = []
xin_zi2 = []
xin_zi3 = []
xin_zi4 = []
xin_zi5 = []
xin_zi6 = []
for s in sal:
s = str(s)
if '千' in s:
xin_zi1.append(s)
else:
if re.findall('-(.*?)萬(wàn)',s):
s = float(re.findall('-(.*?)萬(wàn)',s)[0])
if 1.0<s<=1.5:
xin_zi2.append(s)
elif 1.5<s<=2.5:
xin_zi3.append(s)
elif 2.5<s<=3.2:
xin_zi4.append(s)
elif 3.2<s<=4.0:
xin_zi5.append(s)
else:
xin_zi6.append(s)
xin_zi = [['<10k',len(xin_zi1)],['10~15k',len(xin_zi2)],['15<25k',len(xin_zi3)],
['25<32k',len(xin_zi4)],['32<40k',len(xin_zi5)],['>40k',len(xin_zi6),]]
x, y =[i[0] for i in xin_zi],[i[1] for i in xin_zi]
c = (
Line()
.add_xaxis(x)
.add_yaxis(
"Python",
y,
markpoint_opts=opts.MarkPointOpts(
data=[opts.MarkPointItem(name="MAX", coord=[x[2], y[2]], value=y[2])]
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="薪資情況"),
xaxis_opts=opts.AxisOpts(name='薪資范圍'), # 設(shè)置x軸名字屬性
yaxis_opts=opts.AxisOpts(name='數(shù)量'), # 設(shè)置y軸名字屬性
)
)
return c
#合并
def page_draggable_layout():
page = Page(layout=Page.DraggablePageLayout)
page.add(
bar_datazoom_slider(),
map_china(),
pie_rich_label(),
line_markpoint_custom(),
)
page.render("page_draggable_layout.html")
if __name__ == "__main__":
page_draggable_layout()
執(zhí)行完后,會(huì)在當(dāng)前目錄下生成一個(gè)page_draggable_layout.html。
然后我們用瀏覽器打開(kāi),就會(huì)看到下面這樣,我們可以隨便拖動(dòng)虛線(xiàn)框來(lái)進(jìn)行組合,組合好后點(diǎn)擊Save Config就會(huì)下載一個(gè)chart_config.json,然后在文件中找到它,剪切到py當(dāng)前目錄。

文件放置好后,可以新建一個(gè)py文件來(lái)執(zhí)行以下代碼,這樣就會(huì)生成一個(gè)resize_render.html,也就完成了。
from pyecharts.charts import Page
Page.save_resize_html('./page_draggable_layout.html',cfg_file='chart_config.json')

最后,點(diǎn)擊打開(kāi)resize_render.html,我們合并成功的圖表就是這樣啦!

總結(jié)
到此這篇關(guān)于Python抓取數(shù)據(jù)并可視化的文章就介紹到這了,更多相關(guān)Python抓取數(shù)據(jù)可視化內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
使用 Python 玩轉(zhuǎn) GitHub 的貢獻(xiàn)板(推薦)
這篇文章主要介紹了使用 Python 玩轉(zhuǎn) GitHub 的貢獻(xiàn)板的相關(guān)知識(shí),非常不錯(cuò),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2019-04-04
Python中利用pyqt5制作指針鐘表顯示實(shí)時(shí)時(shí)間(指針時(shí)鐘)
這篇文章主要介紹了Python中利用pyqt5制作指針鐘表顯示實(shí)時(shí)時(shí)間(動(dòng)態(tài)指針時(shí)鐘),本文通過(guò)示例代碼給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2022-02-02
在keras中model.fit_generator()和model.fit()的區(qū)別說(shuō)明
這篇文章主要介紹了在keras中model.fit_generator()和model.fit()的區(qū)別說(shuō)明,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-06-06
python3制作捧腹網(wǎng)段子頁(yè)爬蟲(chóng)
網(wǎng)上的Python教程大都是2.X版本的,python2.X和python3.X相比較改動(dòng)比較大,好多庫(kù)的用法不太一樣,我安裝的是python3.X,我們來(lái)看看詳細(xì)的例子2017-02-02

