python神經(jīng)網(wǎng)絡(luò)Keras常用學(xué)習(xí)率衰減匯總
前言
增加了論文中的余弦退火下降方式。如圖所示:

學(xué)習(xí)率是深度學(xué)習(xí)中非常重要的一環(huán),好好學(xué)習(xí)吧!
為什么要調(diào)控學(xué)習(xí)率
在深度學(xué)習(xí)中,學(xué)習(xí)率的調(diào)整非常重要。
學(xué)習(xí)率大有如下優(yōu)點(diǎn):
1、加快學(xué)習(xí)速率。
2、幫助跳出局部最優(yōu)值。
但存在如下缺點(diǎn):
1、導(dǎo)致模型訓(xùn)練不收斂。
2、單單使用大學(xué)習(xí)率容易導(dǎo)致模型不精確。
學(xué)習(xí)率小有如下優(yōu)點(diǎn):
1、幫助模型收斂,有助于模型細(xì)化。
2、提高模型精度。
但存在如下缺點(diǎn):
1、無(wú)法跳出局部最優(yōu)值。
2、收斂緩慢。
學(xué)習(xí)率大和學(xué)習(xí)率小的功能是幾乎相反的。因此我們適當(dāng)?shù)恼{(diào)整學(xué)習(xí)率,才可以最大程度的提高訓(xùn)練性能。
下降方式匯總
1、階層性下降
在Keras當(dāng)中,常用ReduceLROnPlateau函數(shù)實(shí)現(xiàn)階層性下降。階層性下降指的就是學(xué)習(xí)率會(huì)突然變?yōu)樵瓉?lái)的1/2或者1/10。
使用ReduceLROnPlateau可以指定某一項(xiàng)指標(biāo)不繼續(xù)下降后,比如說(shuō)驗(yàn)證集的loss、訓(xùn)練集的loss等,突然下降學(xué)習(xí)率,變?yōu)樵瓉?lái)的1/2或者1/10。
ReduceLROnPlateau的主要參數(shù)有:
1、factor:在某一項(xiàng)指標(biāo)不繼續(xù)下降后學(xué)習(xí)率下降的比率。
2、patience:在某一項(xiàng)指標(biāo)不繼續(xù)下降幾個(gè)時(shí)代后,學(xué)習(xí)率開始下降。
# 導(dǎo)入ReduceLROnPlateau from keras.callbacks import ReduceLROnPlateau # 定義ReduceLROnPlateau reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, verbose=1) # 使用ReduceLROnPlateau model.fit(X_train, Y_train, callbacks=[reduce_lr])
2、指數(shù)型下降
在Keras當(dāng)中,我沒(méi)有找到特別好的Callback直接實(shí)現(xiàn)指數(shù)型下降,于是利用Callback類實(shí)現(xiàn)了一個(gè)。
指數(shù)型下降指的就是學(xué)習(xí)率會(huì)隨著指數(shù)函數(shù)不斷下降。
具體公式如下:

1、learning_rate指的是當(dāng)前的學(xué)習(xí)率。
2、learning_rate_base指的是基礎(chǔ)學(xué)習(xí)率。
3、decay_rate指的是衰減系數(shù)。
效果如圖所示:

實(shí)現(xiàn)方式如下,利用Callback實(shí)現(xiàn),與普通的ReduceLROnPlateau調(diào)用方式類似:
import numpy as np
import matplotlib.pyplot as plt
import keras
from keras import backend as K
from keras.layers import Flatten,Conv2D,Dropout,Input,Dense,MaxPooling2D
from keras.models import Model
def exponent(global_epoch,
learning_rate_base,
decay_rate,
min_learn_rate=0,
):
learning_rate = learning_rate_base * pow(decay_rate, global_epoch)
learning_rate = max(learning_rate,min_learn_rate)
return learning_rate
class ExponentDecayScheduler(keras.callbacks.Callback):
"""
繼承Callback,實(shí)現(xiàn)對(duì)學(xué)習(xí)率的調(diào)度
"""
def __init__(self,
learning_rate_base,
decay_rate,
global_epoch_init=0,
min_learn_rate=0,
verbose=0):
super(ExponentDecayScheduler, self).__init__()
# 基礎(chǔ)的學(xué)習(xí)率
self.learning_rate_base = learning_rate_base
# 全局初始化epoch
self.global_epoch = global_epoch_init
self.decay_rate = decay_rate
# 參數(shù)顯示
self.verbose = verbose
# learning_rates用于記錄每次更新后的學(xué)習(xí)率,方便圖形化觀察
self.min_learn_rate = min_learn_rate
self.learning_rates = []
def on_epoch_end(self, epochs ,logs=None):
self.global_epoch = self.global_epoch + 1
lr = K.get_value(self.model.optimizer.lr)
self.learning_rates.append(lr)
#更新學(xué)習(xí)率
def on_epoch_begin(self, batch, logs=None):
lr = exponent(global_epoch=self.global_epoch,
learning_rate_base=self.learning_rate_base,
decay_rate = self.decay_rate,
min_learn_rate = self.min_learn_rate)
K.set_value(self.model.optimizer.lr, lr)
if self.verbose > 0:
print('\nBatch %05d: setting learning '
'rate to %s.' % (self.global_epoch + 1, lr))
# 載入Mnist手寫數(shù)據(jù)集
mnist = keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = np.expand_dims(x_train,-1)
x_test = np.expand_dims(x_test,-1)
#-----------------------------#
# 創(chuàng)建模型
#-----------------------------#
inputs = Input([28,28,1])
x = Conv2D(32, kernel_size= 5,padding = 'same',activation="relu")(inputs)
x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x)
x = Conv2D(64, kernel_size= 5,padding = 'same',activation="relu")(x)
x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x)
x = Flatten()(x)
x = Dense(1024)(x)
x = Dense(256)(x)
out = Dense(10, activation='softmax')(x)
model = Model(inputs,out)
# 設(shè)定優(yōu)化器,loss,計(jì)算準(zhǔn)確率
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 設(shè)置訓(xùn)練參數(shù)
epochs = 10
init_epoch = 0
# 每一次訓(xùn)練使用多少個(gè)Batch
batch_size = 31
# 最大學(xué)習(xí)率
learning_rate_base = 1e-3
sample_count = len(x_train)
# 學(xué)習(xí)率
exponent_lr = ExponentDecayScheduler(learning_rate_base = learning_rate_base,
global_epoch_init = init_epoch,
decay_rate = 0.9,
min_learn_rate = 1e-6
)
# 利用fit進(jìn)行訓(xùn)練
model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size,
verbose=1, callbacks=[exponent_lr])
plt.plot(exponent_lr.learning_rates)
plt.xlabel('Step', fontsize=20)
plt.ylabel('lr', fontsize=20)
plt.axis([0, epochs, 0, learning_rate_base*1.1])
plt.xticks(np.arange(0, epochs, 1))
plt.grid()
plt.title('lr decay with exponent', fontsize=20)
plt.show()
3、余弦退火衰減
余弦退火衰減法,學(xué)習(xí)率會(huì)先上升再下降,這是退火優(yōu)化法的思想。(關(guān)于什么是退火算法可以百度。)
上升的時(shí)候使用線性上升,下降的時(shí)候模擬cos函數(shù)下降。
效果如圖所示:

余弦退火衰減有幾個(gè)比較必要的參數(shù):
1、learning_rate_base:學(xué)習(xí)率最高值。
2、warmup_learning_rate:最開始的學(xué)習(xí)率。
3、warmup_steps:多少步長(zhǎng)后到達(dá)頂峰值。
實(shí)現(xiàn)方式如下,利用Callback實(shí)現(xiàn),與普通的ReduceLROnPlateau調(diào)用方式類似:
import numpy as np
import matplotlib.pyplot as plt
import keras
from keras import backend as K
from keras.layers import Flatten,Conv2D,Dropout,Input,Dense,MaxPooling2D
from keras.models import Model
def cosine_decay_with_warmup(global_step,
learning_rate_base,
total_steps,
warmup_learning_rate=0.0,
warmup_steps=0,
hold_base_rate_steps=0,
min_learn_rate=0,
):
"""
參數(shù):
global_step: 上面定義的Tcur,記錄當(dāng)前執(zhí)行的步數(shù)。
learning_rate_base:預(yù)先設(shè)置的學(xué)習(xí)率,當(dāng)warm_up階段學(xué)習(xí)率增加到learning_rate_base,就開始學(xué)習(xí)率下降。
total_steps: 是總的訓(xùn)練的步數(shù),等于epoch*sample_count/batch_size,(sample_count是樣本總數(shù),epoch是總的循環(huán)次數(shù))
warmup_learning_rate: 這是warm up階段線性增長(zhǎng)的初始值
warmup_steps: warm_up總的需要持續(xù)的步數(shù)
hold_base_rate_steps: 這是可選的參數(shù),即當(dāng)warm up階段結(jié)束后保持學(xué)習(xí)率不變,知道hold_base_rate_steps結(jié)束后才開始學(xué)習(xí)率下降
"""
if total_steps < warmup_steps:
raise ValueError('total_steps must be larger or equal to '
'warmup_steps.')
#這里實(shí)現(xiàn)了余弦退火的原理,設(shè)置學(xué)習(xí)率的最小值為0,所以簡(jiǎn)化了表達(dá)式
learning_rate = 0.5 * learning_rate_base * (1 + np.cos(np.pi *
(global_step - warmup_steps - hold_base_rate_steps) / float(total_steps - warmup_steps - hold_base_rate_steps)))
#如果hold_base_rate_steps大于0,表明在warm up結(jié)束后學(xué)習(xí)率在一定步數(shù)內(nèi)保持不變
if hold_base_rate_steps > 0:
learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps,
learning_rate, learning_rate_base)
if warmup_steps > 0:
if learning_rate_base < warmup_learning_rate:
raise ValueError('learning_rate_base must be larger or equal to '
'warmup_learning_rate.')
#線性增長(zhǎng)的實(shí)現(xiàn)
slope = (learning_rate_base - warmup_learning_rate) / warmup_steps
warmup_rate = slope * global_step + warmup_learning_rate
#只有當(dāng)global_step 仍然處于warm up階段才會(huì)使用線性增長(zhǎng)的學(xué)習(xí)率warmup_rate,否則使用余弦退火的學(xué)習(xí)率learning_rate
learning_rate = np.where(global_step < warmup_steps, warmup_rate,
learning_rate)
learning_rate = max(learning_rate,min_learn_rate)
return learning_rate
class WarmUpCosineDecayScheduler(keras.callbacks.Callback):
"""
繼承Callback,實(shí)現(xiàn)對(duì)學(xué)習(xí)率的調(diào)度
"""
def __init__(self,
learning_rate_base,
total_steps,
global_step_init=0,
warmup_learning_rate=0.0,
warmup_steps=0,
hold_base_rate_steps=0,
min_learn_rate=0,
verbose=0):
super(WarmUpCosineDecayScheduler, self).__init__()
# 基礎(chǔ)的學(xué)習(xí)率
self.learning_rate_base = learning_rate_base
# 總共的步數(shù),訓(xùn)練完所有世代的步數(shù)epochs * sample_count / batch_size
self.total_steps = total_steps
# 全局初始化step
self.global_step = global_step_init
# 熱調(diào)整參數(shù)
self.warmup_learning_rate = warmup_learning_rate
# 熱調(diào)整步長(zhǎng),warmup_epoch * sample_count / batch_size
self.warmup_steps = warmup_steps
self.hold_base_rate_steps = hold_base_rate_steps
# 參數(shù)顯示
self.verbose = verbose
# learning_rates用于記錄每次更新后的學(xué)習(xí)率,方便圖形化觀察
self.min_learn_rate = min_learn_rate
self.learning_rates = []
#更新global_step,并記錄當(dāng)前學(xué)習(xí)率
def on_batch_end(self, batch, logs=None):
self.global_step = self.global_step + 1
lr = K.get_value(self.model.optimizer.lr)
self.learning_rates.append(lr)
#更新學(xué)習(xí)率
def on_batch_begin(self, batch, logs=None):
lr = cosine_decay_with_warmup(global_step=self.global_step,
learning_rate_base=self.learning_rate_base,
total_steps=self.total_steps,
warmup_learning_rate=self.warmup_learning_rate,
warmup_steps=self.warmup_steps,
hold_base_rate_steps=self.hold_base_rate_steps,
min_learn_rate = self.min_learn_rate)
K.set_value(self.model.optimizer.lr, lr)
if self.verbose > 0:
print('\nBatch %05d: setting learning '
'rate to %s.' % (self.global_step + 1, lr))
# 載入Mnist手寫數(shù)據(jù)集
mnist = keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = np.expand_dims(x_train,-1)
x_test = np.expand_dims(x_test,-1)
#-----------------------------#
# 創(chuàng)建模型
#-----------------------------#
inputs = Input([28,28,1])
x = Conv2D(32, kernel_size= 5,padding = 'same',activation="relu")(inputs)
x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x)
x = Conv2D(64, kernel_size= 5,padding = 'same',activation="relu")(x)
x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x)
x = Flatten()(x)
x = Dense(1024)(x)
x = Dense(256)(x)
out = Dense(10, activation='softmax')(x)
model = Model(inputs,out)
# 設(shè)定優(yōu)化器,loss,計(jì)算準(zhǔn)確率
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 設(shè)置訓(xùn)練參數(shù)
epochs = 10
# 預(yù)熱期
warmup_epoch = 3
# 每一次訓(xùn)練使用多少個(gè)Batch
batch_size = 16
# 最大學(xué)習(xí)率
learning_rate_base = 1e-3
sample_count = len(x_train)
# 總共的步長(zhǎng)
total_steps = int(epochs * sample_count / batch_size)
# 預(yù)熱步長(zhǎng)
warmup_steps = int(warmup_epoch * sample_count / batch_size)
# 學(xué)習(xí)率
warm_up_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base,
total_steps=total_steps,
warmup_learning_rate=1e-5,
warmup_steps=warmup_steps,
hold_base_rate_steps=5,
min_learn_rate = 1e-6
)
# 利用fit進(jìn)行訓(xùn)練
model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size,
verbose=1, callbacks=[warm_up_lr])
plt.plot(warm_up_lr.learning_rates)
plt.xlabel('Step', fontsize=20)
plt.ylabel('lr', fontsize=20)
plt.axis([0, total_steps, 0, learning_rate_base*1.1])
plt.xticks(np.arange(0, epochs, 1))
plt.grid()
plt.title('Cosine decay with warmup', fontsize=20)
plt.show()
4、余弦退火衰減更新版
論文當(dāng)中的余弦退火衰減并非只上升下降一次,因此我重新寫了一段代碼用于實(shí)現(xiàn)多次上升下降:

實(shí)現(xiàn)方式如下,利用Callback實(shí)現(xiàn),與普通的ReduceLROnPlateau調(diào)用方式類似:
import numpy as np
import matplotlib.pyplot as plt
import keras
from keras import backend as K
from keras.layers import Flatten,Conv2D,Dropout,Input,Dense,MaxPooling2D
from keras.models import Model
def cosine_decay_with_warmup(global_step,
learning_rate_base,
total_steps,
warmup_learning_rate=0.0,
warmup_steps=0,
hold_base_rate_steps=0,
min_learn_rate=0,
):
"""
參數(shù):
global_step: 上面定義的Tcur,記錄當(dāng)前執(zhí)行的步數(shù)。
learning_rate_base:預(yù)先設(shè)置的學(xué)習(xí)率,當(dāng)warm_up階段學(xué)習(xí)率增加到learning_rate_base,就開始學(xué)習(xí)率下降。
total_steps: 是總的訓(xùn)練的步數(shù),等于epoch*sample_count/batch_size,(sample_count是樣本總數(shù),epoch是總的循環(huán)次數(shù))
warmup_learning_rate: 這是warm up階段線性增長(zhǎng)的初始值
warmup_steps: warm_up總的需要持續(xù)的步數(shù)
hold_base_rate_steps: 這是可選的參數(shù),即當(dāng)warm up階段結(jié)束后保持學(xué)習(xí)率不變,知道hold_base_rate_steps結(jié)束后才開始學(xué)習(xí)率下降
"""
if total_steps < warmup_steps:
raise ValueError('total_steps must be larger or equal to '
'warmup_steps.')
#這里實(shí)現(xiàn)了余弦退火的原理,設(shè)置學(xué)習(xí)率的最小值為0,所以簡(jiǎn)化了表達(dá)式
learning_rate = 0.5 * learning_rate_base * (1 + np.cos(np.pi *
(global_step - warmup_steps - hold_base_rate_steps) / float(total_steps - warmup_steps - hold_base_rate_steps)))
#如果hold_base_rate_steps大于0,表明在warm up結(jié)束后學(xué)習(xí)率在一定步數(shù)內(nèi)保持不變
if hold_base_rate_steps > 0:
learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps,
learning_rate, learning_rate_base)
if warmup_steps > 0:
if learning_rate_base < warmup_learning_rate:
raise ValueError('learning_rate_base must be larger or equal to '
'warmup_learning_rate.')
#線性增長(zhǎng)的實(shí)現(xiàn)
slope = (learning_rate_base - warmup_learning_rate) / warmup_steps
warmup_rate = slope * global_step + warmup_learning_rate
#只有當(dāng)global_step 仍然處于warm up階段才會(huì)使用線性增長(zhǎng)的學(xué)習(xí)率warmup_rate,否則使用余弦退火的學(xué)習(xí)率learning_rate
learning_rate = np.where(global_step < warmup_steps, warmup_rate,
learning_rate)
learning_rate = max(learning_rate,min_learn_rate)
return learning_rate
class WarmUpCosineDecayScheduler(keras.callbacks.Callback):
"""
繼承Callback,實(shí)現(xiàn)對(duì)學(xué)習(xí)率的調(diào)度
"""
def __init__(self,
learning_rate_base,
total_steps,
global_step_init=0,
warmup_learning_rate=0.0,
warmup_steps=0,
hold_base_rate_steps=0,
min_learn_rate=0,
# interval_epoch代表余弦退火之間的最低點(diǎn)
interval_epoch=[0.05, 0.15, 0.30, 0.50],
verbose=0):
super(WarmUpCosineDecayScheduler, self).__init__()
# 基礎(chǔ)的學(xué)習(xí)率
self.learning_rate_base = learning_rate_base
# 熱調(diào)整參數(shù)
self.warmup_learning_rate = warmup_learning_rate
# 參數(shù)顯示
self.verbose = verbose
# learning_rates用于記錄每次更新后的學(xué)習(xí)率,方便圖形化觀察
self.min_learn_rate = min_learn_rate
self.learning_rates = []
self.interval_epoch = interval_epoch
# 貫穿全局的步長(zhǎng)
self.global_step_for_interval = global_step_init
# 用于上升的總步長(zhǎng)
self.warmup_steps_for_interval = warmup_steps
# 保持最高峰的總步長(zhǎng)
self.hold_steps_for_interval = hold_base_rate_steps
# 整個(gè)訓(xùn)練的總步長(zhǎng)
self.total_steps_for_interval = total_steps
self.interval_index = 0
# 計(jì)算出來(lái)兩個(gè)最低點(diǎn)的間隔
self.interval_reset = [self.interval_epoch[0]]
for i in range(len(self.interval_epoch)-1):
self.interval_reset.append(self.interval_epoch[i+1]-self.interval_epoch[i])
self.interval_reset.append(1-self.interval_epoch[-1])
#更新global_step,并記錄當(dāng)前學(xué)習(xí)率
def on_batch_end(self, batch, logs=None):
self.global_step = self.global_step + 1
self.global_step_for_interval = self.global_step_for_interval + 1
lr = K.get_value(self.model.optimizer.lr)
self.learning_rates.append(lr)
#更新學(xué)習(xí)率
def on_batch_begin(self, batch, logs=None):
# 每到一次最低點(diǎn)就重新更新參數(shù)
if self.global_step_for_interval in [0]+[int(i*self.total_steps_for_interval) for i in self.interval_epoch]:
self.total_steps = self.total_steps_for_interval * self.interval_reset[self.interval_index]
self.warmup_steps = self.warmup_steps_for_interval * self.interval_reset[self.interval_index]
self.hold_base_rate_steps = self.hold_steps_for_interval * self.interval_reset[self.interval_index]
self.global_step = 0
self.interval_index += 1
lr = cosine_decay_with_warmup(global_step=self.global_step,
learning_rate_base=self.learning_rate_base,
total_steps=self.total_steps,
warmup_learning_rate=self.warmup_learning_rate,
warmup_steps=self.warmup_steps,
hold_base_rate_steps=self.hold_base_rate_steps,
min_learn_rate = self.min_learn_rate)
K.set_value(self.model.optimizer.lr, lr)
if self.verbose > 0:
print('\nBatch %05d: setting learning '
'rate to %s.' % (self.global_step + 1, lr))
# 載入Mnist手寫數(shù)據(jù)集
mnist = keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = np.expand_dims(x_train,-1)
x_test = np.expand_dims(x_test,-1)
y_train = y_train
#-----------------------------#
# 創(chuàng)建模型
#-----------------------------#
inputs = Input([28,28,1])
x = Conv2D(32, kernel_size= 5,padding = 'same',activation="relu")(inputs)
x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x)
x = Conv2D(64, kernel_size= 5,padding = 'same',activation="relu")(x)
x = MaxPooling2D(pool_size = 2, strides = 2, padding = 'same',)(x)
x = Flatten()(x)
x = Dense(1024)(x)
x = Dense(256)(x)
out = Dense(10, activation='softmax')(x)
model = Model(inputs,out)
# 設(shè)定優(yōu)化器,loss,計(jì)算準(zhǔn)確率
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 設(shè)置訓(xùn)練參數(shù)
epochs = 10
# 預(yù)熱期
warmup_epoch = 2
# 每一次訓(xùn)練使用多少個(gè)Batch
batch_size = 256
# 最大學(xué)習(xí)率
learning_rate_base = 1e-3
sample_count = len(x_train)
# 總共的步長(zhǎng)
total_steps = int(epochs * sample_count / batch_size)
# 預(yù)熱步長(zhǎng)
warmup_steps = int(warmup_epoch * sample_count / batch_size)
# 學(xué)習(xí)率
warm_up_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base,
total_steps=total_steps,
warmup_learning_rate=1e-5,
warmup_steps=warmup_steps,
hold_base_rate_steps=5,
min_learn_rate=1e-6
)
# 利用fit進(jìn)行訓(xùn)練
model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size,
verbose=1, callbacks=[warm_up_lr])
plt.plot(warm_up_lr.learning_rates)
plt.xlabel('Step', fontsize=20)
plt.ylabel('lr', fontsize=20)
plt.axis([0, total_steps, 0, learning_rate_base*1.1])
plt.grid()
plt.title('Cosine decay with warmup', fontsize=20)
plt.show()
以上就是python神經(jīng)網(wǎng)絡(luò)Keras常用學(xué)習(xí)率衰減匯總的詳細(xì)內(nèi)容,更多關(guān)于Keras學(xué)習(xí)率衰減的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
信號(hào)生成及DFT的python實(shí)現(xiàn)方式
今天小編就為大家分享一篇信號(hào)生成及DFT的python實(shí)現(xiàn)方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-02-02
TensorFlow人工智能學(xué)習(xí)數(shù)據(jù)合并分割統(tǒng)計(jì)示例詳解
這篇文章主要為大家介紹了TensorFlow人工智能學(xué)習(xí)數(shù)據(jù)合并分割及統(tǒng)計(jì)的示例詳解有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2021-11-11
pytest-sugar?執(zhí)行過(guò)程中顯示進(jìn)度條的腳本分享
Pytest-sugar是一款用來(lái)改善控制臺(tái)顯示的插件,增加了進(jìn)度條顯示,使得在用例執(zhí)行過(guò)程中可以看到進(jìn)度條,而且進(jìn)度條是根據(jù)用例是否通過(guò)標(biāo)注不同顏色,非常醒目,接下來(lái)通過(guò)本文給大家分享下pytest?sugar?顯示進(jìn)度條的腳本,感興趣的朋友一起看看吧2022-12-12

