欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python神經(jīng)網(wǎng)絡Densenet模型復現(xiàn)詳解

 更新時間:2022年05月07日 12:15:19   作者:Bubbliiiing  
這篇文章主要為大家介紹了python神經(jīng)網(wǎng)絡Densenet模型復現(xiàn)詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪

什么是Densenet

據(jù)說Densenet比Resnet還要厲害,我決定好好學一下。

ResNet模型的出現(xiàn)使得深度學習神經(jīng)網(wǎng)絡可以變得更深,進而實現(xiàn)了更高的準確度。

ResNet模型的核心是通過建立前面層與后面層之間的短路連接(shortcuts),這有助于訓練過程中梯度的反向傳播,從而能訓練出更深的CNN網(wǎng)絡。

DenseNet模型,它的基本思路與ResNet一致,也是建立前面層與后面層的短路連接,不同的是,但是它建立的是前面所有層與后面層的密集連接。

DenseNet還有一個特點是實現(xiàn)了特征重用。

這些特點讓DenseNet在參數(shù)和計算成本更少的情形下實現(xiàn)比ResNet更優(yōu)的性能。

DenseNet示意圖如下:

代碼下載

Densenet

1、Densenet的整體結(jié)構(gòu)

如圖所示Densenet由DenseBlock和中間的間隔模塊Transition Layer組成。

1、DenseBlock:DenseBlock指的就是DenseNet特有的模塊,如下圖所示,前面所有層與后面層的具有密集連接,在同一個DenseBlock當中,特征層的高寬不會發(fā)生改變,但是通道數(shù)會發(fā)生改變。

2、Transition Layer:Transition Layer是將不同DenseBlock之間進行連接的模塊,主要功能是整合上一個DenseBlock獲得的特征,并且縮小上一個DenseBlock的寬高,在Transition Layer中,一般會使用一個步長為2的AveragePooling2D縮小特征層的寬高。

2、DenseBlock

DenseBlock的實現(xiàn)示意圖如圖所示:

以前獲得的特征會在保留后不斷的堆疊起來。

以一個簡單例子來表現(xiàn)一下具體的DenseBlock的流程:

假設(shè)輸入特征層為X0。

1、對x0進行一次1x1卷積調(diào)整通道數(shù)到4*32后,再利用3x3卷積獲得一個32通道的特征層,此時會獲得一個shape為(h,w,32)的特征層x1。

2、將獲得的x1和初始的x0堆疊,獲得一個新的特征層,這個特征層會同時保留初始x0的特征也會保留經(jīng)過卷積處理后的特征。

3、反復經(jīng)過步驟1、2的處理,原始的特征會一直得到保留,經(jīng)過卷積處理后的特征也會得到保留。當網(wǎng)絡程度不斷加深,就可以實現(xiàn)前面所有層與后面層的具有密集連接。

實現(xiàn)代碼為:

def dense_block(x, blocks, name):
    for i in range(blocks):
        x = conv_block(x, 32, name=name + '_block' + str(i + 1))
    return x
def conv_block(x, growth_rate, name):
    bn_axis = 3 
    x1 = layers.BatchNormalization(axis=bn_axis,
                                   epsilon=1.001e-5,
                                   name=name + '_0_bn')(x)
    x1 = layers.Activation('relu', name=name + '_0_relu')(x1)
    x1 = layers.Conv2D(4 * growth_rate, 1,
                       use_bias=False,
                       name=name + '_1_conv')(x1)
    x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
                                   name=name + '_1_bn')(x1)
    x1 = layers.Activation('relu', name=name + '_1_relu')(x1)
    x1 = layers.Conv2D(growth_rate, 3,
                       padding='same',
                       use_bias=False,
                       name=name + '_2_conv')(x1)
    x = layers.Concatenate(axis=bn_axis, name=name + '_concat')([x, x1])
    return x

3、Transition Layer

Transition Layer將不同DenseBlock之間進行連接的模塊,主要功能是整合上一個DenseBlock獲得的特征,并且縮小上一個DenseBlock的寬高,在Transition Layer中,一般會使用一個步長為2的AveragePooling2D縮小特征層的寬高。

實現(xiàn)代碼為:

def transition_block(x, reduction, name):
    bn_axis = 3
    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
                                  name=name + '_bn')(x)
    x = layers.Activation('relu', name=name + '_relu')(x)
    x = layers.Conv2D(int(backend.int_shape(x)[bn_axis] * reduction), 1,
                      use_bias=False,
                      name=name + '_conv')(x)
    x = layers.AveragePooling2D(2, strides=2, name=name + '_pool')(x)
    return x

網(wǎng)絡實現(xiàn)代碼

from keras.preprocessing import image
from keras.models import Model
from keras import layers
from keras.applications import imagenet_utils
from keras.applications.imagenet_utils import decode_predictions
from keras.utils.data_utils import get_file
from keras import backend 
import numpy as np
BASE_WEIGTHS_PATH = (
    'https://github.com/keras-team/keras-applications/'
    'releases/download/densenet/')
DENSENET121_WEIGHT_PATH = (
    BASE_WEIGTHS_PATH +
    'densenet121_weights_tf_dim_ordering_tf_kernels.h5')
DENSENET169_WEIGHT_PATH = (
    BASE_WEIGTHS_PATH +
    'densenet169_weights_tf_dim_ordering_tf_kernels.h5')
DENSENET201_WEIGHT_PATH = (
    BASE_WEIGTHS_PATH +
    'densenet201_weights_tf_dim_ordering_tf_kernels.h5')
def dense_block(x, blocks, name):
    for i in range(blocks):
        x = conv_block(x, 32, name=name + '_block' + str(i + 1))
    return x
def conv_block(x, growth_rate, name):
    bn_axis = 3 
    x1 = layers.BatchNormalization(axis=bn_axis,
                                   epsilon=1.001e-5,
                                   name=name + '_0_bn')(x)
    x1 = layers.Activation('relu', name=name + '_0_relu')(x1)
    x1 = layers.Conv2D(4 * growth_rate, 1,
                       use_bias=False,
                       name=name + '_1_conv')(x1)
    x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
                                   name=name + '_1_bn')(x1)
    x1 = layers.Activation('relu', name=name + '_1_relu')(x1)
    x1 = layers.Conv2D(growth_rate, 3,
                       padding='same',
                       use_bias=False,
                       name=name + '_2_conv')(x1)
    x = layers.Concatenate(axis=bn_axis, name=name + '_concat')([x, x1])
    return x
def transition_block(x, reduction, name):
    bn_axis = 3
    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
                                  name=name + '_bn')(x)
    x = layers.Activation('relu', name=name + '_relu')(x)
    x = layers.Conv2D(int(backend.int_shape(x)[bn_axis] * reduction), 1,
                      use_bias=False,
                      name=name + '_conv')(x)
    x = layers.AveragePooling2D(2, strides=2, name=name + '_pool')(x)
    return x
def DenseNet(blocks,
             input_shape=None,
             classes=1000,
             **kwargs):
    img_input = layers.Input(shape=input_shape)
    bn_axis = 3
    # 224,224,3 -> 112,112,64
    x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
    x = layers.Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
    x = layers.BatchNormalization(
        axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')(x)
    x = layers.Activation('relu', name='conv1/relu')(x)
    # 112,112,64 -> 56,56,64
    x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
    x = layers.MaxPooling2D(3, strides=2, name='pool1')(x)
    # 56,56,64 -> 56,56,64+32*block[0]
    # Densenet121 56,56,64 -> 56,56,64+32*6 == 56,56,256
    x = dense_block(x, blocks[0], name='conv2')
    # 56,56,64+32*block[0] -> 28,28,32+16*block[0]
    # Densenet121 56,56,256 -> 28,28,32+16*6 == 28,28,128
    x = transition_block(x, 0.5, name='pool2')
    # 28,28,32+16*block[0] -> 28,28,32+16*block[0]+32*block[1]
    # Densenet121 28,28,128 -> 28,28,128+32*12 == 28,28,512
    x = dense_block(x, blocks[1], name='conv3')
    # Densenet121 28,28,512 -> 14,14,256
    x = transition_block(x, 0.5, name='pool3')
    # Densenet121 14,14,256 -> 14,14,256+32*block[2] == 14,14,1024
    x = dense_block(x, blocks[2], name='conv4')
    # Densenet121 14,14,1024 -> 7,7,512
    x = transition_block(x, 0.5, name='pool4')
    # Densenet121 7,7,512 -> 7,7,256+32*block[3] == 7,7,1024
    x = dense_block(x, blocks[3], name='conv5')
    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x)
    x = layers.Activation('relu', name='relu')(x)
    x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    x = layers.Dense(classes, activation='softmax', name='fc1000')(x)
    inputs = img_input
    if blocks == [6, 12, 24, 16]:
        model = Model(inputs, x, name='densenet121')
    elif blocks == [6, 12, 32, 32]:
        model = Model(inputs, x, name='densenet169')
    elif blocks == [6, 12, 48, 32]:
        model = Model(inputs, x, name='densenet201')
    else:
        model = Model(inputs, x, name='densenet')
    return model
def DenseNet121(input_shape=[224,224,3],
                classes=1000,
                **kwargs):
    return DenseNet([6, 12, 24, 16],
                    input_shape, classes,
                    **kwargs)
def DenseNet169(input_shape=[224,224,3],
                classes=1000,
                **kwargs):
    return DenseNet([6, 12, 32, 32],
                    input_shape, classes,
                    **kwargs)
def DenseNet201(input_shape=[224,224,3],
                classes=1000,
                **kwargs):
    return DenseNet([6, 12, 48, 32],
                    input_shape, classes,
                    **kwargs)
def preprocess_input(x):
    x /= 255.
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    x[..., 0] -= mean[0]
    x[..., 1] -= mean[1]
    x[..., 2] -= mean[2]
    if std is not None:
        x[..., 0] /= std[0]
        x[..., 1] /= std[1]
        x[..., 2] /= std[2]
    return x
if __name__ == '__main__':
    # model = DenseNet121()
    # weights_path = get_file(
    # 'densenet121_weights_tf_dim_ordering_tf_kernels.h5',
    # DENSENET121_WEIGHT_PATH,
    # cache_subdir='models',
    # file_hash='9d60b8095a5708f2dcce2bca79d332c7')
    model = DenseNet169()
    weights_path = get_file(
    'densenet169_weights_tf_dim_ordering_tf_kernels.h5',
    DENSENET169_WEIGHT_PATH,
    cache_subdir='models',
    file_hash='d699b8f76981ab1b30698df4c175e90b')
    # model = DenseNet201()
    # weights_path = get_file(
    # 'densenet201_weights_tf_dim_ordering_tf_kernels.h5',
    # DENSENET201_WEIGHT_PATH,
    # cache_subdir='models',
    # file_hash='1ceb130c1ea1b78c3bf6114dbdfd8807')
    model.load_weights(weights_path)
    model.summary()
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    print('Input image shape:', x.shape)
    preds = model.predict(x)
    print(np.argmax(preds))
    print('Predicted:', decode_predictions(preds))

以上就是python神經(jīng)網(wǎng)絡Densenet模型復現(xiàn)詳解的詳細內(nèi)容,更多關(guān)于Densenet模型復現(xiàn)的資料請關(guān)注腳本之家其它相關(guān)文章!

相關(guān)文章

  • Python 音頻生成器的實現(xiàn)示例

    Python 音頻生成器的實現(xiàn)示例

    這篇文章主要介紹了Python 音頻生成器的實現(xiàn)示例,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧
    2019-12-12
  • Python數(shù)據(jù)庫格式化輸出文檔的思路與方法

    Python數(shù)據(jù)庫格式化輸出文檔的思路與方法

    這篇文章主要給大家介紹了關(guān)于Python數(shù)據(jù)庫格式化輸出文檔的思路與方法,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧
    2021-03-03
  • Python簡易版圖書管理系統(tǒng)

    Python簡易版圖書管理系統(tǒng)

    這篇文章主要為大家詳細介紹了Python如何實現(xiàn)簡易版圖書管理系統(tǒng),具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2019-08-08
  • python實現(xiàn)學生通訊錄管理系統(tǒng)

    python實現(xiàn)學生通訊錄管理系統(tǒng)

    這篇文章主要為大家詳細介紹了python實現(xiàn)學生通訊錄管理系統(tǒng),文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2021-02-02
  • python pands實現(xiàn)execl轉(zhuǎn)csv 并修改csv指定列的方法

    python pands實現(xiàn)execl轉(zhuǎn)csv 并修改csv指定列的方法

    今天小編就為大家分享一篇python pands實現(xiàn)execl轉(zhuǎn)csv 并修改csv指定列的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2018-12-12
  • Django接收照片儲存文件的實例代碼

    Django接收照片儲存文件的實例代碼

    這篇文章主要介紹了Django接收照片儲存文件的實例代碼 ,代碼簡單易懂,非常不錯,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下
    2020-03-03
  • Python的Pandas時序數(shù)據(jù)詳解

    Python的Pandas時序數(shù)據(jù)詳解

    這篇文章主要為大家詳細介紹了Pandas時序數(shù)據(jù),文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來幫助
    2022-03-03
  • 解決Djang2.0.1中的reverse導入失敗的問題

    解決Djang2.0.1中的reverse導入失敗的問題

    今天小編就為大家分享一篇解決Djang2.0.1中的reverse導入失敗的問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2019-08-08
  • Python讀取一個目錄下所有目錄和文件的方法

    Python讀取一個目錄下所有目錄和文件的方法

    這篇文章主要介紹了Python讀取一個目錄下所有目錄和文件的方法,涉及Python針對目錄和文件的遍歷與運算操作相關(guān)技巧,需要的朋友可以參考下
    2016-07-07
  • python分割一個文本為多個文本的方法

    python分割一個文本為多個文本的方法

    這篇文章主要為大家詳細介紹了python分割一個文本為多個文本,具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2019-07-07

最新評論