python神經(jīng)網(wǎng)絡(luò)Densenet模型復(fù)現(xiàn)詳解
什么是Densenet
據(jù)說(shuō)Densenet比Resnet還要厲害,我決定好好學(xué)一下。
ResNet模型的出現(xiàn)使得深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)可以變得更深,進(jìn)而實(shí)現(xiàn)了更高的準(zhǔn)確度。
ResNet模型的核心是通過(guò)建立前面層與后面層之間的短路連接(shortcuts),這有助于訓(xùn)練過(guò)程中梯度的反向傳播,從而能訓(xùn)練出更深的CNN網(wǎng)絡(luò)。
DenseNet模型,它的基本思路與ResNet一致,也是建立前面層與后面層的短路連接,不同的是,但是它建立的是前面所有層與后面層的密集連接。
DenseNet還有一個(gè)特點(diǎn)是實(shí)現(xiàn)了特征重用。
這些特點(diǎn)讓DenseNet在參數(shù)和計(jì)算成本更少的情形下實(shí)現(xiàn)比ResNet更優(yōu)的性能。
DenseNet示意圖如下:

Densenet
1、Densenet的整體結(jié)構(gòu)

如圖所示Densenet由DenseBlock和中間的間隔模塊Transition Layer組成。
1、DenseBlock:DenseBlock指的就是DenseNet特有的模塊,如下圖所示,前面所有層與后面層的具有密集連接,在同一個(gè)DenseBlock當(dāng)中,特征層的高寬不會(huì)發(fā)生改變,但是通道數(shù)會(huì)發(fā)生改變。

2、Transition Layer:Transition Layer是將不同DenseBlock之間進(jìn)行連接的模塊,主要功能是整合上一個(gè)DenseBlock獲得的特征,并且縮小上一個(gè)DenseBlock的寬高,在Transition Layer中,一般會(huì)使用一個(gè)步長(zhǎng)為2的AveragePooling2D縮小特征層的寬高。
2、DenseBlock
DenseBlock的實(shí)現(xiàn)示意圖如圖所示:

以前獲得的特征會(huì)在保留后不斷的堆疊起來(lái)。
以一個(gè)簡(jiǎn)單例子來(lái)表現(xiàn)一下具體的DenseBlock的流程:
假設(shè)輸入特征層為X0。
1、對(duì)x0進(jìn)行一次1x1卷積調(diào)整通道數(shù)到4*32后,再利用3x3卷積獲得一個(gè)32通道的特征層,此時(shí)會(huì)獲得一個(gè)shape為(h,w,32)的特征層x1。
2、將獲得的x1和初始的x0堆疊,獲得一個(gè)新的特征層,這個(gè)特征層會(huì)同時(shí)保留初始x0的特征也會(huì)保留經(jīng)過(guò)卷積處理后的特征。
3、反復(fù)經(jīng)過(guò)步驟1、2的處理,原始的特征會(huì)一直得到保留,經(jīng)過(guò)卷積處理后的特征也會(huì)得到保留。當(dāng)網(wǎng)絡(luò)程度不斷加深,就可以實(shí)現(xiàn)前面所有層與后面層的具有密集連接。

實(shí)現(xiàn)代碼為:
def dense_block(x, blocks, name):
for i in range(blocks):
x = conv_block(x, 32, name=name + '_block' + str(i + 1))
return x
def conv_block(x, growth_rate, name):
bn_axis = 3
x1 = layers.BatchNormalization(axis=bn_axis,
epsilon=1.001e-5,
name=name + '_0_bn')(x)
x1 = layers.Activation('relu', name=name + '_0_relu')(x1)
x1 = layers.Conv2D(4 * growth_rate, 1,
use_bias=False,
name=name + '_1_conv')(x1)
x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
name=name + '_1_bn')(x1)
x1 = layers.Activation('relu', name=name + '_1_relu')(x1)
x1 = layers.Conv2D(growth_rate, 3,
padding='same',
use_bias=False,
name=name + '_2_conv')(x1)
x = layers.Concatenate(axis=bn_axis, name=name + '_concat')([x, x1])
return x
3、Transition Layer
Transition Layer將不同DenseBlock之間進(jìn)行連接的模塊,主要功能是整合上一個(gè)DenseBlock獲得的特征,并且縮小上一個(gè)DenseBlock的寬高,在Transition Layer中,一般會(huì)使用一個(gè)步長(zhǎng)為2的AveragePooling2D縮小特征層的寬高。
實(shí)現(xiàn)代碼為:
def transition_block(x, reduction, name):
bn_axis = 3
x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
name=name + '_bn')(x)
x = layers.Activation('relu', name=name + '_relu')(x)
x = layers.Conv2D(int(backend.int_shape(x)[bn_axis] * reduction), 1,
use_bias=False,
name=name + '_conv')(x)
x = layers.AveragePooling2D(2, strides=2, name=name + '_pool')(x)
return x
網(wǎng)絡(luò)實(shí)現(xiàn)代碼
from keras.preprocessing import image
from keras.models import Model
from keras import layers
from keras.applications import imagenet_utils
from keras.applications.imagenet_utils import decode_predictions
from keras.utils.data_utils import get_file
from keras import backend
import numpy as np
BASE_WEIGTHS_PATH = (
'https://github.com/keras-team/keras-applications/'
'releases/download/densenet/')
DENSENET121_WEIGHT_PATH = (
BASE_WEIGTHS_PATH +
'densenet121_weights_tf_dim_ordering_tf_kernels.h5')
DENSENET169_WEIGHT_PATH = (
BASE_WEIGTHS_PATH +
'densenet169_weights_tf_dim_ordering_tf_kernels.h5')
DENSENET201_WEIGHT_PATH = (
BASE_WEIGTHS_PATH +
'densenet201_weights_tf_dim_ordering_tf_kernels.h5')
def dense_block(x, blocks, name):
for i in range(blocks):
x = conv_block(x, 32, name=name + '_block' + str(i + 1))
return x
def conv_block(x, growth_rate, name):
bn_axis = 3
x1 = layers.BatchNormalization(axis=bn_axis,
epsilon=1.001e-5,
name=name + '_0_bn')(x)
x1 = layers.Activation('relu', name=name + '_0_relu')(x1)
x1 = layers.Conv2D(4 * growth_rate, 1,
use_bias=False,
name=name + '_1_conv')(x1)
x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
name=name + '_1_bn')(x1)
x1 = layers.Activation('relu', name=name + '_1_relu')(x1)
x1 = layers.Conv2D(growth_rate, 3,
padding='same',
use_bias=False,
name=name + '_2_conv')(x1)
x = layers.Concatenate(axis=bn_axis, name=name + '_concat')([x, x1])
return x
def transition_block(x, reduction, name):
bn_axis = 3
x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
name=name + '_bn')(x)
x = layers.Activation('relu', name=name + '_relu')(x)
x = layers.Conv2D(int(backend.int_shape(x)[bn_axis] * reduction), 1,
use_bias=False,
name=name + '_conv')(x)
x = layers.AveragePooling2D(2, strides=2, name=name + '_pool')(x)
return x
def DenseNet(blocks,
input_shape=None,
classes=1000,
**kwargs):
img_input = layers.Input(shape=input_shape)
bn_axis = 3
# 224,224,3 -> 112,112,64
x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
x = layers.Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
x = layers.BatchNormalization(
axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')(x)
x = layers.Activation('relu', name='conv1/relu')(x)
# 112,112,64 -> 56,56,64
x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
x = layers.MaxPooling2D(3, strides=2, name='pool1')(x)
# 56,56,64 -> 56,56,64+32*block[0]
# Densenet121 56,56,64 -> 56,56,64+32*6 == 56,56,256
x = dense_block(x, blocks[0], name='conv2')
# 56,56,64+32*block[0] -> 28,28,32+16*block[0]
# Densenet121 56,56,256 -> 28,28,32+16*6 == 28,28,128
x = transition_block(x, 0.5, name='pool2')
# 28,28,32+16*block[0] -> 28,28,32+16*block[0]+32*block[1]
# Densenet121 28,28,128 -> 28,28,128+32*12 == 28,28,512
x = dense_block(x, blocks[1], name='conv3')
# Densenet121 28,28,512 -> 14,14,256
x = transition_block(x, 0.5, name='pool3')
# Densenet121 14,14,256 -> 14,14,256+32*block[2] == 14,14,1024
x = dense_block(x, blocks[2], name='conv4')
# Densenet121 14,14,1024 -> 7,7,512
x = transition_block(x, 0.5, name='pool4')
# Densenet121 7,7,512 -> 7,7,256+32*block[3] == 7,7,1024
x = dense_block(x, blocks[3], name='conv5')
x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x)
x = layers.Activation('relu', name='relu')(x)
x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
x = layers.Dense(classes, activation='softmax', name='fc1000')(x)
inputs = img_input
if blocks == [6, 12, 24, 16]:
model = Model(inputs, x, name='densenet121')
elif blocks == [6, 12, 32, 32]:
model = Model(inputs, x, name='densenet169')
elif blocks == [6, 12, 48, 32]:
model = Model(inputs, x, name='densenet201')
else:
model = Model(inputs, x, name='densenet')
return model
def DenseNet121(input_shape=[224,224,3],
classes=1000,
**kwargs):
return DenseNet([6, 12, 24, 16],
input_shape, classes,
**kwargs)
def DenseNet169(input_shape=[224,224,3],
classes=1000,
**kwargs):
return DenseNet([6, 12, 32, 32],
input_shape, classes,
**kwargs)
def DenseNet201(input_shape=[224,224,3],
classes=1000,
**kwargs):
return DenseNet([6, 12, 48, 32],
input_shape, classes,
**kwargs)
def preprocess_input(x):
x /= 255.
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
x[..., 0] -= mean[0]
x[..., 1] -= mean[1]
x[..., 2] -= mean[2]
if std is not None:
x[..., 0] /= std[0]
x[..., 1] /= std[1]
x[..., 2] /= std[2]
return x
if __name__ == '__main__':
# model = DenseNet121()
# weights_path = get_file(
# 'densenet121_weights_tf_dim_ordering_tf_kernels.h5',
# DENSENET121_WEIGHT_PATH,
# cache_subdir='models',
# file_hash='9d60b8095a5708f2dcce2bca79d332c7')
model = DenseNet169()
weights_path = get_file(
'densenet169_weights_tf_dim_ordering_tf_kernels.h5',
DENSENET169_WEIGHT_PATH,
cache_subdir='models',
file_hash='d699b8f76981ab1b30698df4c175e90b')
# model = DenseNet201()
# weights_path = get_file(
# 'densenet201_weights_tf_dim_ordering_tf_kernels.h5',
# DENSENET201_WEIGHT_PATH,
# cache_subdir='models',
# file_hash='1ceb130c1ea1b78c3bf6114dbdfd8807')
model.load_weights(weights_path)
model.summary()
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print('Input image shape:', x.shape)
preds = model.predict(x)
print(np.argmax(preds))
print('Predicted:', decode_predictions(preds))
以上就是python神經(jīng)網(wǎng)絡(luò)Densenet模型復(fù)現(xiàn)詳解的詳細(xì)內(nèi)容,更多關(guān)于Densenet模型復(fù)現(xiàn)的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python數(shù)據(jù)庫(kù)格式化輸出文檔的思路與方法
這篇文章主要給大家介紹了關(guān)于Python數(shù)據(jù)庫(kù)格式化輸出文檔的思路與方法,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2021-03-03
python實(shí)現(xiàn)學(xué)生通訊錄管理系統(tǒng)
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)學(xué)生通訊錄管理系統(tǒng),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2021-02-02
python pands實(shí)現(xiàn)execl轉(zhuǎn)csv 并修改csv指定列的方法
今天小編就為大家分享一篇python pands實(shí)現(xiàn)execl轉(zhuǎn)csv 并修改csv指定列的方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2018-12-12
Python的Pandas時(shí)序數(shù)據(jù)詳解
這篇文章主要為大家詳細(xì)介紹了Pandas時(shí)序數(shù)據(jù),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來(lái)幫助2022-03-03
解決Djang2.0.1中的reverse導(dǎo)入失敗的問(wèn)題
今天小編就為大家分享一篇解決Djang2.0.1中的reverse導(dǎo)入失敗的問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-08-08

