python神經(jīng)網(wǎng)絡(luò)ShuffleNetV2模型復(fù)現(xiàn)詳解
什么是ShuffleNetV2
據(jù)說ShuffleNetV2比Mobilenet還要厲害,我決定好好學(xué)一下
這篇是ECCV2018關(guān)于輕量級模型的文章。
目前大部分的輕量級模型在對比模型速度時用的指標是FLOPs,這個指標主要衡量的就是卷積層的乘法操作。
但是實際運用中會發(fā)現(xiàn),同一個FLOPS的網(wǎng)絡(luò)運算速度卻不同,只用FLOPS去進行衡量的話并不能完全代表模型速度。
通過如下圖所示對比,作者發(fā)現(xiàn)Elemwise/Data IO等內(nèi)存讀寫密集型操作也會極大的影響模型運算速度。

結(jié)合理論與實驗作者提出了4條實用的指導(dǎo)原則:
1、卷積層的輸入和輸出特征通道數(shù)相等時MAC最小,此時模型速度最快。
2、過量使用組卷積會增加MAC。
3、網(wǎng)絡(luò)碎片化會降低并行度。
4、不能忽略元素級操作,比如ReLU和Add,雖然它們的FLOPs較小,但是卻需要較大的MAC。
ShuffleNetV2
1、所用模塊

如圖所示是ShuffleNetV2所常用的兩個模塊:
1、當Stride==1的時候,采用左邊的模塊,由于殘差邊沒有卷積,因此寬高不變,主要用于加深網(wǎng)絡(luò)層數(shù)。
2、當Stride==2的時候,采用右邊的模塊,由于殘差邊有卷積,因此寬高可變,主要用于壓縮特征層的寬高,進行下采樣。
模塊實現(xiàn)代碼如下:
def channel_split(x, name=''):
# 輸入進來的通道數(shù)
in_channles = x.shape.as_list()[-1]
ip = in_channles // 2
# 對通道數(shù)進行分割
c_hat = Lambda(lambda z: z[:, :, :, 0:ip], name='%s/sp%d_slice' % (name, 0))(x)
c = Lambda(lambda z: z[:, :, :, ip:], name='%s/sp%d_slice' % (name, 1))(x)
return c_hat, c
def channel_shuffle(x):
height, width, channels = x.shape.as_list()[1:]
channels_per_split = channels // 2
# 通道交換
x = K.reshape(x, [-1, height, width, 2, channels_per_split])
x = K.permute_dimensions(x, (0,1,2,4,3))
x = K.reshape(x, [-1, height, width, channels])
return x
def shuffle_unit(inputs, out_channels, bottleneck_ratio, strides=2, stage=1, block=1):
bn_axis = -1
prefix = 'stage{}/block{}'.format(stage, block)
# [116, 232, 464]
bottleneck_channels = int(out_channels * bottleneck_ratio/2)
if strides < 2:
c_hat, c = channel_split(inputs, '{}/spl'.format(prefix))
inputs = c
# [116, 232, 464]
x = Conv2D(bottleneck_channels, kernel_size=(1,1), strides=1, padding='same', name='{}/1x1conv_1'.format(prefix))(inputs)
x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_1'.format(prefix))(x)
x = Activation('relu', name='{}/relu_1x1conv_1'.format(prefix))(x)
# 深度可分離卷積
x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same', name='{}/3x3dwconv'.format(prefix))(x)
x = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv'.format(prefix))(x)
# [116, 232, 464]
x = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1conv_2'.format(prefix))(x)
x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_2'.format(prefix))(x)
x = Activation('relu', name='{}/relu_1x1conv_2'.format(prefix))(x)
# 當strides等于2的時候,殘差邊需要添加卷積
if strides < 2:
ret = Concatenate(axis=bn_axis, name='{}/concat_1'.format(prefix))([x, c_hat])
else:
s2 = DepthwiseConv2D(kernel_size=3, strides=2, padding='same', name='{}/3x3dwconv_2'.format(prefix))(inputs)
s2 = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv_2'.format(prefix))(s2)
s2 = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1_conv_3'.format(prefix))(s2)
s2 = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_3'.format(prefix))(s2)
s2 = Activation('relu', name='{}/relu_1x1conv_3'.format(prefix))(s2)
ret = Concatenate(axis=bn_axis, name='{}/concat_2'.format(prefix))([x, s2])
ret = Lambda(channel_shuffle, name='{}/channel_shuffle'.format(prefix))(ret)
return ret
def block(x, channel_map, bottleneck_ratio, repeat=1, stage=1):
x = shuffle_unit(x, out_channels=channel_map[stage-1],
strides=2,bottleneck_ratio=bottleneck_ratio,stage=stage,block=1)
for i in range(1, repeat+1):
x = shuffle_unit(x, out_channels=channel_map[stage-1],strides=1,
bottleneck_ratio=bottleneck_ratio,stage=stage, block=(1+i))
return x
2、網(wǎng)絡(luò)整體結(jié)構(gòu)

網(wǎng)絡(luò)整體結(jié)構(gòu)如圖所示:
1、當輸入進來的圖片為224,224,3的時候,會經(jīng)過一次卷積壓縮+一次最大池化,此時網(wǎng)絡(luò)的shape由224,224,3->112,112,24->56,56,24。
2、經(jīng)過一次右邊的ShuffleNet模塊后進行三次左邊的ShuffleNet模塊。此時網(wǎng)絡(luò)的shape由56,56,24->28,28,116。
3、經(jīng)過一次右邊的ShuffleNet模塊后進行七次左邊的ShuffleNet模塊。此時網(wǎng)絡(luò)的shape由28,28,116->14,14,232。
4、經(jīng)過一次右邊的ShuffleNet模塊后進行三次左邊的ShuffleNet模塊。此時網(wǎng)絡(luò)的shape由14,14,232->7,7,464。
5、卷積到1024,此時網(wǎng)絡(luò)的shape由7,7,464->7,7,1024。
6、全局池化后,進行全連接,用于預(yù)測。
網(wǎng)絡(luò)實現(xiàn)代碼
ShuffleNetV2一共有4個scale,分別對應(yīng)不同大小的ShuffleNetV2。

import numpy as np
from keras.utils import plot_model
from keras.layers import Input, Conv2D, MaxPool2D
from keras.layers import Activation, Add, Concatenate, Conv2D
from keras.layers import GlobalAveragePooling2D, Dense
from keras.layers import MaxPool2D,AveragePooling2D, BatchNormalization, Lambda, DepthwiseConv2D
from keras.models import Model
import keras.backend as K
import numpy as np
def channel_split(x, name=''):
# 輸入進來的通道數(shù)
in_channles = x.shape.as_list()[-1]
ip = in_channles // 2
# 對通道數(shù)進行分割
c_hat = Lambda(lambda z: z[:, :, :, 0:ip], name='%s/sp%d_slice' % (name, 0))(x)
c = Lambda(lambda z: z[:, :, :, ip:], name='%s/sp%d_slice' % (name, 1))(x)
return c_hat, c
def channel_shuffle(x):
height, width, channels = x.shape.as_list()[1:]
channels_per_split = channels // 2
# 通道交換
x = K.reshape(x, [-1, height, width, 2, channels_per_split])
x = K.permute_dimensions(x, (0,1,2,4,3))
x = K.reshape(x, [-1, height, width, channels])
return x
def shuffle_unit(inputs, out_channels, bottleneck_ratio, strides=2, stage=1, block=1):
bn_axis = -1
prefix = 'stage{}/block{}'.format(stage, block)
# [116, 232, 464]
bottleneck_channels = int(out_channels * bottleneck_ratio/2)
if strides < 2:
c_hat, c = channel_split(inputs, '{}/spl'.format(prefix))
inputs = c
# [116, 232, 464]
x = Conv2D(bottleneck_channels, kernel_size=(1,1), strides=1, padding='same', name='{}/1x1conv_1'.format(prefix))(inputs)
x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_1'.format(prefix))(x)
x = Activation('relu', name='{}/relu_1x1conv_1'.format(prefix))(x)
# 深度可分離卷積
x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same', name='{}/3x3dwconv'.format(prefix))(x)
x = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv'.format(prefix))(x)
# [116, 232, 464]
x = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1conv_2'.format(prefix))(x)
x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_2'.format(prefix))(x)
x = Activation('relu', name='{}/relu_1x1conv_2'.format(prefix))(x)
# 當strides等于2的時候,殘差邊需要添加卷積
if strides < 2:
ret = Concatenate(axis=bn_axis, name='{}/concat_1'.format(prefix))([x, c_hat])
else:
s2 = DepthwiseConv2D(kernel_size=3, strides=2, padding='same', name='{}/3x3dwconv_2'.format(prefix))(inputs)
s2 = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv_2'.format(prefix))(s2)
s2 = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1_conv_3'.format(prefix))(s2)
s2 = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_3'.format(prefix))(s2)
s2 = Activation('relu', name='{}/relu_1x1conv_3'.format(prefix))(s2)
ret = Concatenate(axis=bn_axis, name='{}/concat_2'.format(prefix))([x, s2])
ret = Lambda(channel_shuffle, name='{}/channel_shuffle'.format(prefix))(ret)
return ret
def block(x, channel_map, bottleneck_ratio, repeat=1, stage=1):
x = shuffle_unit(x, out_channels=channel_map[stage-1],
strides=2,bottleneck_ratio=bottleneck_ratio,stage=stage,block=1)
for i in range(1, repeat+1):
x = shuffle_unit(x, out_channels=channel_map[stage-1],strides=1,
bottleneck_ratio=bottleneck_ratio,stage=stage, block=(1+i))
return x
def ShuffleNetV2(input_tensor=None,
pooling='max',
input_shape=(224,224,3),
num_shuffle_units=[3,7,3],
scale_factor=1,
bottleneck_ratio=1,
classes=1000):
name = 'ShuffleNetV2_{}_{}_{}'.format(scale_factor, bottleneck_ratio, "".join([str(x) for x in num_shuffle_units]))
out_dim_stage_two = {0.5:48, 1:116, 1.5:176, 2:244}
out_channels_in_stage = np.array([1,1,2,4])
out_channels_in_stage *= out_dim_stage_two[scale_factor] # calculate output channels for each stage
out_channels_in_stage[0] = 24 # first stage has always 24 output channels
out_channels_in_stage = out_channels_in_stage.astype(int)
img_input = Input(shape=input_shape)
x = Conv2D(filters=out_channels_in_stage[0], kernel_size=(3, 3), padding='same', use_bias=False, strides=(2, 2),
activation='relu', name='conv1')(img_input)
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='maxpool1')(x)
for stage in range(len(num_shuffle_units)):
repeat = num_shuffle_units[stage]
x = block(x, out_channels_in_stage,
repeat=repeat,
bottleneck_ratio=bottleneck_ratio,
stage=stage + 2)
if scale_factor!=2:
x = Conv2D(1024, kernel_size=1, padding='same', strides=1, name='1x1conv5_out', activation='relu')(x)
else:
x = Conv2D(2048, kernel_size=1, padding='same', strides=1, name='1x1conv5_out', activation='relu')(x)
x = GlobalAveragePooling2D(name='global_avg_pool')(x)
x = Dense(classes, name='fc')(x)
x = Activation('softmax', name='softmax')(x)
inputs = img_input
model = Model(inputs, x, name=name)
return model
if __name__ == '__main__':
import os
os.environ['CUDA_VISIBLE_DEVICES'] = ''
model = ShuffleNetV2(input_shape=(224, 224, 3),scale_factor=1)
model.summary()
以上就是python神經(jīng)網(wǎng)絡(luò)ShuffleNetV2模型復(fù)現(xiàn)詳解的詳細內(nèi)容,更多關(guān)于ShuffleNetV2模型復(fù)現(xiàn)的資料請關(guān)注腳本之家其它相關(guān)文章!
- Python機器學(xué)習(xí)利用鳶尾花數(shù)據(jù)繪制ROC和AUC曲線
- 利用Python畫ROC曲線和AUC值計算
- 一文詳解Python灰色預(yù)測模型實現(xiàn)示例
- python回歸分析邏輯斯蒂模型之多分類任務(wù)詳解
- python深度學(xué)習(xí)tensorflow訓(xùn)練好的模型進行圖像分類
- Python實現(xiàn)自動駕駛訓(xùn)練模型
- python神經(jīng)網(wǎng)絡(luò)Keras?GhostNet模型的實現(xiàn)
- python神經(jīng)網(wǎng)絡(luò)Densenet模型復(fù)現(xiàn)詳解
- python神經(jīng)網(wǎng)絡(luò)MobileNetV3?small模型的復(fù)現(xiàn)詳解
- python神經(jīng)網(wǎng)絡(luò)MobileNetV3?large模型的復(fù)現(xiàn)詳解
- python神經(jīng)網(wǎng)絡(luò)Inception?ResnetV2模型復(fù)現(xiàn)詳解
- python模型性能ROC和AUC分析詳解
相關(guān)文章
keras分類模型中的輸入數(shù)據(jù)與標簽的維度實例
這篇文章主要介紹了keras分類模型中的輸入數(shù)據(jù)與標簽的維度實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-07-07
Python圖像處理之gif動態(tài)圖的解析與合成操作詳解
這篇文章主要介紹了Python圖像處理之gif動態(tài)圖的解析與合成操作,結(jié)合實例形式分析了Python基于PIL模塊解析gif文件,以及基于imageio庫合成gif文件的相關(guān)操作技巧,需要的朋友可以參考下2018-12-12
淺談Pandas Series 和 Numpy array中的相同點
今天小編就為大家分享一篇淺談Pandas Series 和 Numpy array中的相同點,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-06-06
Python-numpy實現(xiàn)灰度圖像的分塊和合并方式
今天小編就為大家分享一篇Python-numpy實現(xiàn)灰度圖像的分塊和合并方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-01-01

