python神經(jīng)網(wǎng)絡(luò)ShuffleNetV2模型復(fù)現(xiàn)詳解
什么是ShuffleNetV2
據(jù)說ShuffleNetV2比Mobilenet還要厲害,我決定好好學(xué)一下
這篇是ECCV2018關(guān)于輕量級(jí)模型的文章。
目前大部分的輕量級(jí)模型在對(duì)比模型速度時(shí)用的指標(biāo)是FLOPs,這個(gè)指標(biāo)主要衡量的就是卷積層的乘法操作。
但是實(shí)際運(yùn)用中會(huì)發(fā)現(xiàn),同一個(gè)FLOPS的網(wǎng)絡(luò)運(yùn)算速度卻不同,只用FLOPS去進(jìn)行衡量的話并不能完全代表模型速度。
通過如下圖所示對(duì)比,作者發(fā)現(xiàn)Elemwise/Data IO等內(nèi)存讀寫密集型操作也會(huì)極大的影響模型運(yùn)算速度。
結(jié)合理論與實(shí)驗(yàn)作者提出了4條實(shí)用的指導(dǎo)原則:
1、卷積層的輸入和輸出特征通道數(shù)相等時(shí)MAC最小,此時(shí)模型速度最快。
2、過量使用組卷積會(huì)增加MAC。
3、網(wǎng)絡(luò)碎片化會(huì)降低并行度。
4、不能忽略元素級(jí)操作,比如ReLU和Add,雖然它們的FLOPs較小,但是卻需要較大的MAC。
ShuffleNetV2
1、所用模塊
如圖所示是ShuffleNetV2所常用的兩個(gè)模塊:
1、當(dāng)Stride==1的時(shí)候,采用左邊的模塊,由于殘差邊沒有卷積,因此寬高不變,主要用于加深網(wǎng)絡(luò)層數(shù)。
2、當(dāng)Stride==2的時(shí)候,采用右邊的模塊,由于殘差邊有卷積,因此寬高可變,主要用于壓縮特征層的寬高,進(jìn)行下采樣。
模塊實(shí)現(xiàn)代碼如下:
def channel_split(x, name=''): # 輸入進(jìn)來的通道數(shù) in_channles = x.shape.as_list()[-1] ip = in_channles // 2 # 對(duì)通道數(shù)進(jìn)行分割 c_hat = Lambda(lambda z: z[:, :, :, 0:ip], name='%s/sp%d_slice' % (name, 0))(x) c = Lambda(lambda z: z[:, :, :, ip:], name='%s/sp%d_slice' % (name, 1))(x) return c_hat, c def channel_shuffle(x): height, width, channels = x.shape.as_list()[1:] channels_per_split = channels // 2 # 通道交換 x = K.reshape(x, [-1, height, width, 2, channels_per_split]) x = K.permute_dimensions(x, (0,1,2,4,3)) x = K.reshape(x, [-1, height, width, channels]) return x def shuffle_unit(inputs, out_channels, bottleneck_ratio, strides=2, stage=1, block=1): bn_axis = -1 prefix = 'stage{}/block{}'.format(stage, block) # [116, 232, 464] bottleneck_channels = int(out_channels * bottleneck_ratio/2) if strides < 2: c_hat, c = channel_split(inputs, '{}/spl'.format(prefix)) inputs = c # [116, 232, 464] x = Conv2D(bottleneck_channels, kernel_size=(1,1), strides=1, padding='same', name='{}/1x1conv_1'.format(prefix))(inputs) x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_1'.format(prefix))(x) x = Activation('relu', name='{}/relu_1x1conv_1'.format(prefix))(x) # 深度可分離卷積 x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same', name='{}/3x3dwconv'.format(prefix))(x) x = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv'.format(prefix))(x) # [116, 232, 464] x = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1conv_2'.format(prefix))(x) x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_2'.format(prefix))(x) x = Activation('relu', name='{}/relu_1x1conv_2'.format(prefix))(x) # 當(dāng)strides等于2的時(shí)候,殘差邊需要添加卷積 if strides < 2: ret = Concatenate(axis=bn_axis, name='{}/concat_1'.format(prefix))([x, c_hat]) else: s2 = DepthwiseConv2D(kernel_size=3, strides=2, padding='same', name='{}/3x3dwconv_2'.format(prefix))(inputs) s2 = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv_2'.format(prefix))(s2) s2 = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1_conv_3'.format(prefix))(s2) s2 = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_3'.format(prefix))(s2) s2 = Activation('relu', name='{}/relu_1x1conv_3'.format(prefix))(s2) ret = Concatenate(axis=bn_axis, name='{}/concat_2'.format(prefix))([x, s2]) ret = Lambda(channel_shuffle, name='{}/channel_shuffle'.format(prefix))(ret) return ret def block(x, channel_map, bottleneck_ratio, repeat=1, stage=1): x = shuffle_unit(x, out_channels=channel_map[stage-1], strides=2,bottleneck_ratio=bottleneck_ratio,stage=stage,block=1) for i in range(1, repeat+1): x = shuffle_unit(x, out_channels=channel_map[stage-1],strides=1, bottleneck_ratio=bottleneck_ratio,stage=stage, block=(1+i)) return x
2、網(wǎng)絡(luò)整體結(jié)構(gòu)
網(wǎng)絡(luò)整體結(jié)構(gòu)如圖所示:
1、當(dāng)輸入進(jìn)來的圖片為224,224,3的時(shí)候,會(huì)經(jīng)過一次卷積壓縮+一次最大池化,此時(shí)網(wǎng)絡(luò)的shape由224,224,3->112,112,24->56,56,24。
2、經(jīng)過一次右邊的ShuffleNet模塊后進(jìn)行三次左邊的ShuffleNet模塊。此時(shí)網(wǎng)絡(luò)的shape由56,56,24->28,28,116。
3、經(jīng)過一次右邊的ShuffleNet模塊后進(jìn)行七次左邊的ShuffleNet模塊。此時(shí)網(wǎng)絡(luò)的shape由28,28,116->14,14,232。
4、經(jīng)過一次右邊的ShuffleNet模塊后進(jìn)行三次左邊的ShuffleNet模塊。此時(shí)網(wǎng)絡(luò)的shape由14,14,232->7,7,464。
5、卷積到1024,此時(shí)網(wǎng)絡(luò)的shape由7,7,464->7,7,1024。
6、全局池化后,進(jìn)行全連接,用于預(yù)測(cè)。
網(wǎng)絡(luò)實(shí)現(xiàn)代碼
ShuffleNetV2一共有4個(gè)scale,分別對(duì)應(yīng)不同大小的ShuffleNetV2。
import numpy as np from keras.utils import plot_model from keras.layers import Input, Conv2D, MaxPool2D from keras.layers import Activation, Add, Concatenate, Conv2D from keras.layers import GlobalAveragePooling2D, Dense from keras.layers import MaxPool2D,AveragePooling2D, BatchNormalization, Lambda, DepthwiseConv2D from keras.models import Model import keras.backend as K import numpy as np def channel_split(x, name=''): # 輸入進(jìn)來的通道數(shù) in_channles = x.shape.as_list()[-1] ip = in_channles // 2 # 對(duì)通道數(shù)進(jìn)行分割 c_hat = Lambda(lambda z: z[:, :, :, 0:ip], name='%s/sp%d_slice' % (name, 0))(x) c = Lambda(lambda z: z[:, :, :, ip:], name='%s/sp%d_slice' % (name, 1))(x) return c_hat, c def channel_shuffle(x): height, width, channels = x.shape.as_list()[1:] channels_per_split = channels // 2 # 通道交換 x = K.reshape(x, [-1, height, width, 2, channels_per_split]) x = K.permute_dimensions(x, (0,1,2,4,3)) x = K.reshape(x, [-1, height, width, channels]) return x def shuffle_unit(inputs, out_channels, bottleneck_ratio, strides=2, stage=1, block=1): bn_axis = -1 prefix = 'stage{}/block{}'.format(stage, block) # [116, 232, 464] bottleneck_channels = int(out_channels * bottleneck_ratio/2) if strides < 2: c_hat, c = channel_split(inputs, '{}/spl'.format(prefix)) inputs = c # [116, 232, 464] x = Conv2D(bottleneck_channels, kernel_size=(1,1), strides=1, padding='same', name='{}/1x1conv_1'.format(prefix))(inputs) x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_1'.format(prefix))(x) x = Activation('relu', name='{}/relu_1x1conv_1'.format(prefix))(x) # 深度可分離卷積 x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same', name='{}/3x3dwconv'.format(prefix))(x) x = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv'.format(prefix))(x) # [116, 232, 464] x = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1conv_2'.format(prefix))(x) x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_2'.format(prefix))(x) x = Activation('relu', name='{}/relu_1x1conv_2'.format(prefix))(x) # 當(dāng)strides等于2的時(shí)候,殘差邊需要添加卷積 if strides < 2: ret = Concatenate(axis=bn_axis, name='{}/concat_1'.format(prefix))([x, c_hat]) else: s2 = DepthwiseConv2D(kernel_size=3, strides=2, padding='same', name='{}/3x3dwconv_2'.format(prefix))(inputs) s2 = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv_2'.format(prefix))(s2) s2 = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1_conv_3'.format(prefix))(s2) s2 = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_3'.format(prefix))(s2) s2 = Activation('relu', name='{}/relu_1x1conv_3'.format(prefix))(s2) ret = Concatenate(axis=bn_axis, name='{}/concat_2'.format(prefix))([x, s2]) ret = Lambda(channel_shuffle, name='{}/channel_shuffle'.format(prefix))(ret) return ret def block(x, channel_map, bottleneck_ratio, repeat=1, stage=1): x = shuffle_unit(x, out_channels=channel_map[stage-1], strides=2,bottleneck_ratio=bottleneck_ratio,stage=stage,block=1) for i in range(1, repeat+1): x = shuffle_unit(x, out_channels=channel_map[stage-1],strides=1, bottleneck_ratio=bottleneck_ratio,stage=stage, block=(1+i)) return x def ShuffleNetV2(input_tensor=None, pooling='max', input_shape=(224,224,3), num_shuffle_units=[3,7,3], scale_factor=1, bottleneck_ratio=1, classes=1000): name = 'ShuffleNetV2_{}_{}_{}'.format(scale_factor, bottleneck_ratio, "".join([str(x) for x in num_shuffle_units])) out_dim_stage_two = {0.5:48, 1:116, 1.5:176, 2:244} out_channels_in_stage = np.array([1,1,2,4]) out_channels_in_stage *= out_dim_stage_two[scale_factor] # calculate output channels for each stage out_channels_in_stage[0] = 24 # first stage has always 24 output channels out_channels_in_stage = out_channels_in_stage.astype(int) img_input = Input(shape=input_shape) x = Conv2D(filters=out_channels_in_stage[0], kernel_size=(3, 3), padding='same', use_bias=False, strides=(2, 2), activation='relu', name='conv1')(img_input) x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='maxpool1')(x) for stage in range(len(num_shuffle_units)): repeat = num_shuffle_units[stage] x = block(x, out_channels_in_stage, repeat=repeat, bottleneck_ratio=bottleneck_ratio, stage=stage + 2) if scale_factor!=2: x = Conv2D(1024, kernel_size=1, padding='same', strides=1, name='1x1conv5_out', activation='relu')(x) else: x = Conv2D(2048, kernel_size=1, padding='same', strides=1, name='1x1conv5_out', activation='relu')(x) x = GlobalAveragePooling2D(name='global_avg_pool')(x) x = Dense(classes, name='fc')(x) x = Activation('softmax', name='softmax')(x) inputs = img_input model = Model(inputs, x, name=name) return model if __name__ == '__main__': import os os.environ['CUDA_VISIBLE_DEVICES'] = '' model = ShuffleNetV2(input_shape=(224, 224, 3),scale_factor=1) model.summary()
以上就是python神經(jīng)網(wǎng)絡(luò)ShuffleNetV2模型復(fù)現(xiàn)詳解的詳細(xì)內(nèi)容,更多關(guān)于ShuffleNetV2模型復(fù)現(xiàn)的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
- Python機(jī)器學(xué)習(xí)利用鳶尾花數(shù)據(jù)繪制ROC和AUC曲線
- 利用Python畫ROC曲線和AUC值計(jì)算
- 一文詳解Python灰色預(yù)測(cè)模型實(shí)現(xiàn)示例
- python回歸分析邏輯斯蒂模型之多分類任務(wù)詳解
- python深度學(xué)習(xí)tensorflow訓(xùn)練好的模型進(jìn)行圖像分類
- Python實(shí)現(xiàn)自動(dòng)駕駛訓(xùn)練模型
- python神經(jīng)網(wǎng)絡(luò)Keras?GhostNet模型的實(shí)現(xiàn)
- python神經(jīng)網(wǎng)絡(luò)Densenet模型復(fù)現(xiàn)詳解
- python神經(jīng)網(wǎng)絡(luò)MobileNetV3?small模型的復(fù)現(xiàn)詳解
- python神經(jīng)網(wǎng)絡(luò)MobileNetV3?large模型的復(fù)現(xiàn)詳解
- python神經(jīng)網(wǎng)絡(luò)Inception?ResnetV2模型復(fù)現(xiàn)詳解
- python模型性能ROC和AUC分析詳解
相關(guān)文章
keras分類模型中的輸入數(shù)據(jù)與標(biāo)簽的維度實(shí)例
這篇文章主要介紹了keras分類模型中的輸入數(shù)據(jù)與標(biāo)簽的維度實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2020-07-07python實(shí)現(xiàn)雙色球隨機(jī)選號(hào)
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)雙色球隨機(jī)選號(hào),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2020-01-01python daemon守護(hù)進(jìn)程實(shí)現(xiàn)
這篇文章主要介紹了python daemon守護(hù)進(jìn)程實(shí)現(xiàn),需要的朋友可以參考下2016-08-08Python圖像處理之gif動(dòng)態(tài)圖的解析與合成操作詳解
這篇文章主要介紹了Python圖像處理之gif動(dòng)態(tài)圖的解析與合成操作,結(jié)合實(shí)例形式分析了Python基于PIL模塊解析gif文件,以及基于imageio庫合成gif文件的相關(guān)操作技巧,需要的朋友可以參考下2018-12-12淺談Pandas Series 和 Numpy array中的相同點(diǎn)
今天小編就為大家分享一篇淺談Pandas Series 和 Numpy array中的相同點(diǎn),具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-06-06Python-numpy實(shí)現(xiàn)灰度圖像的分塊和合并方式
今天小編就為大家分享一篇Python-numpy實(shí)現(xiàn)灰度圖像的分塊和合并方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2020-01-01Python?time模塊時(shí)間獲取和轉(zhuǎn)換方法
這篇文章主要介紹了Python?time模塊時(shí)間獲取和轉(zhuǎn)換,本文通過實(shí)例代碼給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2023-05-05