欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

networkx庫(kù)繪制帶權(quán)圖給無(wú)權(quán)圖加權(quán)重輸出

 更新時(shí)間:2022年05月13日 12:47:03   作者:zheng____  
這篇文章主要為大家介紹了Python?networkx庫(kù)繪制帶權(quán)圖給無(wú)權(quán)圖加權(quán)重并輸出權(quán)重的示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪

問(wèn)題

最近在研究圖學(xué)習(xí),在用networkx庫(kù)繪圖的時(shí)候發(fā)現(xiàn)問(wèn)題。

'''
author:zheng
time:2020.10.23
'''
import networkx as nx
import random
g = nx.karate_club_graph()  # 空手道俱樂(lè)部
for u,v in g.edges:
    print(u,v)
    g.add_edge(u, v, weight=random.uniform(0, 1))  # 權(quán)值為(0,1)間的隨機(jī)數(shù)
print(g.edges())

輸出結(jié)果

[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 10), (0, 11), (0, 12), (0, 13), (0, 17), (0, 19), (0, 21), (0, 31), (1, 2), (1, 3), (1, 7), (1, 13), (1, 17), (1, 19), (1, 21), (1, 30), (2, 3), (2, 7), (2, 8), (2, 9), (2, 13), (2, 27), (2, 28), (2, 32), (3, 7), (3, 12), (3, 13), (4, 6), (4, 10), (5, 6), (5, 10), (5, 16), (6, 16), (8, 30), (8, 32), (8, 33), (13, 33), (19, 33), (31, 24), (31, 25), (31, 28), (31, 32), (31, 33), (30, 32), (30, 33), (9, 33), (27, 23), (27, 24), (27, 33), (28, 33), (32, 14), (32, 15), (32, 18), (32, 20), (32, 22), (32, 23), (32, 29), (32, 33), (33, 14), (33, 15), (33, 18), (33, 20), (33, 22), (33, 23), (33, 26), (33, 29), (23, 25), (23, 29), (25, 24), (29, 26)]

發(fā)現(xiàn)了問(wèn)題,我明明通過(guò)random.uniform(0, 1)隨機(jī)設(shè)置了權(quán)重為什么在結(jié)果輸出中并未顯示,是輸入權(quán)重的問(wèn)題,還是結(jié)果展示的問(wèn)題。

'''
author:zheng
time:2020.10.23
'''
import networkx as nx
import random
g = nx.karate_club_graph()  # 空手道俱樂(lè)部
for u,v in g.edges:
    g.add_edge(u, v, weight=random.uniform(0, 1))  # 權(quán)值為(0,1)間的隨機(jī)數(shù)
print(g.edges(data=True))

大家看看兩個(gè)代碼有沒(méi)有什么不同,在G.edges(data=True)中添加了data=True

此時(shí)輸出結(jié)果:

[(0, 1, {'weight': 0.49899129531032826}), (0, 2, {'weight': 0.7493395367183026}), (0, 3, {'weight': 0.9805046801748599}), (0, 4, {'weight': 0.644560549909913}), (0, 5, {'weight': 0.022461095194206915}), (0, 6, {'weight': 0.39855273941801683}), (0, 7, {'weight': 0.9167666610641618}), (0, 8, {'weight': 0.3736839965822629}), (0, 10, {'weight': 0.1685687039463848}), (0, 11, {'weight': 0.5900599708379352}), (0, 12, {'weight': 0.49772285717726605}), (0, 13, {'weight': 0.6988903320924684}), (0, 17, {'weight': 0.8108991409995218}), (0, 19, {'weight': 0.21743421569163335}), (0, 21, {'weight': 0.687637570308398}), (0, 31, {'weight': 0.13180440967486262}), (1, 2, {'weight': 0.0603379086168323}), (1, 3, {'weight': 0.9536653778354264}), (1, 7, {'weight': 0.1680232359702576}), (1, 13, {'weight': 0.23821372652905115}), (1, 17, {'weight': 0.6861169007257469}), (1, 19, {'weight': 0.006553274592374314}), (1, 21, {'weight': 0.23452495215883118}), (1, 30, {'weight': 0.7638165639559286}), (2, 3, {'weight': 0.18381620307197954}), (2, 7, {'weight': 0.08671998389998026}), (2, 8, {'weight': 0.7395899045684956}), (2, 9, {'weight': 0.5973616237830935}), (2, 13, {'weight': 0.25253256663029156}), (2, 27, {'weight': 0.4151629971620948}), (2, 28, {'weight': 0.6830413630275037}), (2, 32, {'weight': 0.10877354662752325}), (3, 7, {'weight': 0.3165078261209674}), (3, 12, {'weight': 0.3258985972202395}), (3, 13, {'weight': 0.5617183737707032}), (4, 6, {'weight': 0.9944831897451706}), (4, 10, {'weight': 0.4258447405573552}), (5, 6, {'weight': 0.17102663345956715}), (5, 10, {'weight': 0.41020894392823837}), (5, 16, {'weight': 0.24048864347638477}), (6, 16, {'weight': 0.5401785263069063}), (8, 30, {'weight': 0.4604358340149278}), (8, 32, {'weight': 0.9601569527970788}), (8, 33, {'weight': 0.2905405465193912}), (13, 33, {'weight': 0.2556445407164615}), (19, 33, {'weight': 0.3008126988319231}), (31, 24, {'weight': 0.8781944129721222}), (31, 25, {'weight': 0.392828914742127}), (31, 28, {'weight': 0.7410701847068474}), (31, 32, {'weight': 0.39869250595380246}), (31, 33, {'weight': 0.4380052794486696}), (30, 32, {'weight': 0.4587792580500568}), (30, 33, {'weight': 0.5106934704075864}), (9, 33, {'weight': 0.9037424067215868}), (27, 23, {'weight': 0.9151325306454512}), (27, 24, {'weight': 0.6079907996445639}), (27, 33, {'weight': 0.6168782680542676}), (28, 33, {'weight': 0.9529880704286767}), (32, 14, {'weight': 0.21711370788129514}), (32, 15, {'weight': 0.21906480255644156}), (32, 18, {'weight': 0.36297161231472697}), (32, 20, {'weight': 0.8295507296873654}), (32, 22, {'weight': 0.725850047579389}), (32, 23, {'weight': 0.06395474428944792}), (32, 29, {'weight': 0.021001018687274553}), (32, 33, {'weight': 0.29227780907194645}), (33, 14, {'weight': 0.7898337840851372}), (33, 15, {'weight': 0.06574640956244104}), (33, 18, {'weight': 0.3193055980182168}), (33, 20, {'weight': 0.22814267912232755}), (33, 22, {'weight': 0.934928086748862}), (33, 23, {'weight': 0.8780586608909188}), (33, 26, {'weight': 0.834765093283264}), (33, 29, {'weight': 0.8927802653939352}), (23, 25, {'weight': 0.18106036608743914}), (23, 29, {'weight': 0.7824721548411848}), (25, 24, {'weight': 0.9362577071184671}), (29, 26, {'weight': 0.06557785001633887})]

如何只輸出權(quán)重

import networkx as nx
import random
g = nx.karate_club_graph()  # 空手道俱樂(lè)部
for u,v in g.edges:
    g.add_edge(u, v, weight=random.uniform(0, 1))  # 權(quán)值為(0,1)
for (u,v,d) in g.edges(data=True):
    print(d['weight'])

輸出結(jié)果

0.9175521740544361
0.09841104142600388
0.9557658899707079
0.9256010898041206
0.2519120041349847
0.48370396192288767
0.8354304958648846
0.758094795660556
0.7910256982243447
0.6281003207621544
0.9801420646231339
0.7941450155753779
0.3851720075568309
0.802202234860892
0.7923045754263267
0.5270583359776736
0.9523963539542339
0.7474601472346581
0.044707615637251674
0.5349188097983026
0.6158693844408302
0.9456154478628968
0.7547788968185274
0.5648525235741113
0.6657063624514532
0.3109915743055601
0.3969190047820317
0.8763009836310122
0.7101598558464499
0.012225959063178693
0.700579386399397
0.8304116006624506
0.426518724548162
0.07244870577629914
0.36116795615537345
0.45781457416039606
0.25726914791707645
0.29778955309109023
0.8892096639219873
0.39322230058450647
0.5085017515323529
0.9597980742524421
0.08034618164792517
0.9143712112937563
0.17242150180445381
0.8914706349104955
0.8480034205451665
0.8217034225251223
0.45552196009659873
0.3909280195122691
0.45119988941609357
0.02984583822414133
0.14404544949710196
0.45459370924953857
0.10296953351890004
0.4948127850493056
0.9238669854480596
0.9399144983422378
0.919211279645529
0.24084759450828674
0.4410486851096309
0.7699702465967465
0.27749525807367836
0.9449097003790671
0.5019309896062647
0.42774455164796255
0.43988066338230847
0.7405733579782761
0.2308870299365694
0.12306785713306911
0.7139426386075743
0.2640769424119722
0.031149630992576394
0.07700734539599274
0.37034537464573547
0.7034898163898959
0.8557141929947621
0.06539918397508715

以上就是networkx庫(kù)繪制帶權(quán)圖給無(wú)權(quán)圖加權(quán)重輸出的詳細(xì)內(nèi)容,更多關(guān)于networkx帶權(quán)圖無(wú)權(quán)圖輸出的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!

相關(guān)文章

  • Django分組聚合查詢實(shí)例分享

    Django分組聚合查詢實(shí)例分享

    在本篇文章里小編給大家分享的是關(guān)于Django分組聚合查詢實(shí)例內(nèi)容,需要的朋友們可以參考下。
    2020-04-04
  • 僅用500行Python代碼實(shí)現(xiàn)一個(gè)英文解析器的教程

    僅用500行Python代碼實(shí)現(xiàn)一個(gè)英文解析器的教程

    這篇文章主要介紹了僅用500行Python代碼實(shí)現(xiàn)一個(gè)英文解析器的教程,自然語(yǔ)言處理近來(lái)也是業(yè)界中一個(gè)熱門課題,作者為NLP方向的開(kāi)發(fā)者,需要的朋友可以參考下
    2015-04-04
  • python3.8+django2+celery5.2.7環(huán)境準(zhǔn)備(python測(cè)試開(kāi)發(fā)django)

    python3.8+django2+celery5.2.7環(huán)境準(zhǔn)備(python測(cè)試開(kāi)發(fā)django)

    這篇文章主要介紹了python測(cè)試開(kāi)發(fā)django之python3.8+django2+celery5.2.7環(huán)境準(zhǔn)備工作,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下
    2022-07-07
  • Pygame游戲開(kāi)發(fā)之太空射擊實(shí)戰(zhàn)入門篇

    Pygame游戲開(kāi)發(fā)之太空射擊實(shí)戰(zhàn)入門篇

    相信大多數(shù)8090后都玩過(guò)太空射擊游戲,在過(guò)去游戲不多的年代太空射擊自然屬于經(jīng)典好玩的一款了,今天我們來(lái)自己動(dòng)手實(shí)現(xiàn)它,在編寫學(xué)習(xí)中回顧過(guò)往展望未來(lái),下面開(kāi)始入門篇
    2022-08-08
  • Python爬取哆啦A夢(mèng)-伴我同行2豆瓣影評(píng)并生成詞云圖

    Python爬取哆啦A夢(mèng)-伴我同行2豆瓣影評(píng)并生成詞云圖

    哆啦A夢(mèng)系列是陪伴我,乃至陪伴了幾代人成長(zhǎng)的故事.50年來(lái),藤子·F·不二雄先生創(chuàng)造了竹蜻蜓,任意門,時(shí)光機(jī)器等等無(wú)數(shù)的新奇道具,讓大雄和他的小伙伴們經(jīng)歷了各種冒險(xiǎn),也經(jīng)歷了許多充滿戲劇性的啼笑皆非的日常.特意寫了這篇文章,教大家怎么繪制詞云圖,需要的朋友可以參考下
    2021-06-06
  • Python 爬蟲(chóng)模擬登陸知乎

    Python 爬蟲(chóng)模擬登陸知乎

    這篇文章主要介紹了Python 爬蟲(chóng)模擬登陸知乎的相關(guān)資料,非常不錯(cuò),具有參考借鑒價(jià)值,需要的朋友可以參考下
    2016-09-09
  • Python語(yǔ)法學(xué)習(xí)之進(jìn)程間的通信方式

    Python語(yǔ)法學(xué)習(xí)之進(jìn)程間的通信方式

    進(jìn)程在創(chuàng)建之后是沒(méi)有辦法獲取返回值的,但有的時(shí)候兩個(gè)進(jìn)程之間需要進(jìn)行相互之間的配合才能完成工作,這就需要通信的幫助。本文主要介紹了Python中進(jìn)程間的通信方式,需要的可以了解一下
    2022-04-04
  • Python中單、雙下劃線的區(qū)別總結(jié)

    Python中單、雙下劃線的區(qū)別總結(jié)

    這篇文章主要給大家介紹了關(guān)于Python中單、雙下劃線區(qū)別的相關(guān)資料,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧。
    2017-12-12
  • TensorFlow通過(guò)文件名/文件夾名獲取標(biāo)簽,并加入隊(duì)列的實(shí)現(xiàn)

    TensorFlow通過(guò)文件名/文件夾名獲取標(biāo)簽,并加入隊(duì)列的實(shí)現(xiàn)

    今天小編就為大家分享一篇TensorFlow通過(guò)文件名/文件夾名獲取標(biāo)簽,并加入隊(duì)列的實(shí)現(xiàn),具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2020-02-02
  • 深入了解如何基于Python讀寫Kafka

    深入了解如何基于Python讀寫Kafka

    這篇文章主要介紹了深入了解如何基于Python讀寫Kafka,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下
    2019-12-12

最新評(píng)論