欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

networkx庫繪制帶權(quán)圖給無權(quán)圖加權(quán)重輸出

 更新時間:2022年05月13日 12:47:03   作者:zheng____  
這篇文章主要為大家介紹了Python?networkx庫繪制帶權(quán)圖給無權(quán)圖加權(quán)重并輸出權(quán)重的示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪

問題

最近在研究圖學習,在用networkx庫繪圖的時候發(fā)現(xiàn)問題。

'''
author:zheng
time:2020.10.23
'''
import networkx as nx
import random
g = nx.karate_club_graph()  # 空手道俱樂部
for u,v in g.edges:
    print(u,v)
    g.add_edge(u, v, weight=random.uniform(0, 1))  # 權(quán)值為(0,1)間的隨機數(shù)
print(g.edges())

輸出結(jié)果

[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 10), (0, 11), (0, 12), (0, 13), (0, 17), (0, 19), (0, 21), (0, 31), (1, 2), (1, 3), (1, 7), (1, 13), (1, 17), (1, 19), (1, 21), (1, 30), (2, 3), (2, 7), (2, 8), (2, 9), (2, 13), (2, 27), (2, 28), (2, 32), (3, 7), (3, 12), (3, 13), (4, 6), (4, 10), (5, 6), (5, 10), (5, 16), (6, 16), (8, 30), (8, 32), (8, 33), (13, 33), (19, 33), (31, 24), (31, 25), (31, 28), (31, 32), (31, 33), (30, 32), (30, 33), (9, 33), (27, 23), (27, 24), (27, 33), (28, 33), (32, 14), (32, 15), (32, 18), (32, 20), (32, 22), (32, 23), (32, 29), (32, 33), (33, 14), (33, 15), (33, 18), (33, 20), (33, 22), (33, 23), (33, 26), (33, 29), (23, 25), (23, 29), (25, 24), (29, 26)]

發(fā)現(xiàn)了問題,我明明通過random.uniform(0, 1)隨機設(shè)置了權(quán)重為什么在結(jié)果輸出中并未顯示,是輸入權(quán)重的問題,還是結(jié)果展示的問題。

'''
author:zheng
time:2020.10.23
'''
import networkx as nx
import random
g = nx.karate_club_graph()  # 空手道俱樂部
for u,v in g.edges:
    g.add_edge(u, v, weight=random.uniform(0, 1))  # 權(quán)值為(0,1)間的隨機數(shù)
print(g.edges(data=True))

大家看看兩個代碼有沒有什么不同,在G.edges(data=True)中添加了data=True

此時輸出結(jié)果:

[(0, 1, {'weight': 0.49899129531032826}), (0, 2, {'weight': 0.7493395367183026}), (0, 3, {'weight': 0.9805046801748599}), (0, 4, {'weight': 0.644560549909913}), (0, 5, {'weight': 0.022461095194206915}), (0, 6, {'weight': 0.39855273941801683}), (0, 7, {'weight': 0.9167666610641618}), (0, 8, {'weight': 0.3736839965822629}), (0, 10, {'weight': 0.1685687039463848}), (0, 11, {'weight': 0.5900599708379352}), (0, 12, {'weight': 0.49772285717726605}), (0, 13, {'weight': 0.6988903320924684}), (0, 17, {'weight': 0.8108991409995218}), (0, 19, {'weight': 0.21743421569163335}), (0, 21, {'weight': 0.687637570308398}), (0, 31, {'weight': 0.13180440967486262}), (1, 2, {'weight': 0.0603379086168323}), (1, 3, {'weight': 0.9536653778354264}), (1, 7, {'weight': 0.1680232359702576}), (1, 13, {'weight': 0.23821372652905115}), (1, 17, {'weight': 0.6861169007257469}), (1, 19, {'weight': 0.006553274592374314}), (1, 21, {'weight': 0.23452495215883118}), (1, 30, {'weight': 0.7638165639559286}), (2, 3, {'weight': 0.18381620307197954}), (2, 7, {'weight': 0.08671998389998026}), (2, 8, {'weight': 0.7395899045684956}), (2, 9, {'weight': 0.5973616237830935}), (2, 13, {'weight': 0.25253256663029156}), (2, 27, {'weight': 0.4151629971620948}), (2, 28, {'weight': 0.6830413630275037}), (2, 32, {'weight': 0.10877354662752325}), (3, 7, {'weight': 0.3165078261209674}), (3, 12, {'weight': 0.3258985972202395}), (3, 13, {'weight': 0.5617183737707032}), (4, 6, {'weight': 0.9944831897451706}), (4, 10, {'weight': 0.4258447405573552}), (5, 6, {'weight': 0.17102663345956715}), (5, 10, {'weight': 0.41020894392823837}), (5, 16, {'weight': 0.24048864347638477}), (6, 16, {'weight': 0.5401785263069063}), (8, 30, {'weight': 0.4604358340149278}), (8, 32, {'weight': 0.9601569527970788}), (8, 33, {'weight': 0.2905405465193912}), (13, 33, {'weight': 0.2556445407164615}), (19, 33, {'weight': 0.3008126988319231}), (31, 24, {'weight': 0.8781944129721222}), (31, 25, {'weight': 0.392828914742127}), (31, 28, {'weight': 0.7410701847068474}), (31, 32, {'weight': 0.39869250595380246}), (31, 33, {'weight': 0.4380052794486696}), (30, 32, {'weight': 0.4587792580500568}), (30, 33, {'weight': 0.5106934704075864}), (9, 33, {'weight': 0.9037424067215868}), (27, 23, {'weight': 0.9151325306454512}), (27, 24, {'weight': 0.6079907996445639}), (27, 33, {'weight': 0.6168782680542676}), (28, 33, {'weight': 0.9529880704286767}), (32, 14, {'weight': 0.21711370788129514}), (32, 15, {'weight': 0.21906480255644156}), (32, 18, {'weight': 0.36297161231472697}), (32, 20, {'weight': 0.8295507296873654}), (32, 22, {'weight': 0.725850047579389}), (32, 23, {'weight': 0.06395474428944792}), (32, 29, {'weight': 0.021001018687274553}), (32, 33, {'weight': 0.29227780907194645}), (33, 14, {'weight': 0.7898337840851372}), (33, 15, {'weight': 0.06574640956244104}), (33, 18, {'weight': 0.3193055980182168}), (33, 20, {'weight': 0.22814267912232755}), (33, 22, {'weight': 0.934928086748862}), (33, 23, {'weight': 0.8780586608909188}), (33, 26, {'weight': 0.834765093283264}), (33, 29, {'weight': 0.8927802653939352}), (23, 25, {'weight': 0.18106036608743914}), (23, 29, {'weight': 0.7824721548411848}), (25, 24, {'weight': 0.9362577071184671}), (29, 26, {'weight': 0.06557785001633887})]

如何只輸出權(quán)重

import networkx as nx
import random
g = nx.karate_club_graph()  # 空手道俱樂部
for u,v in g.edges:
    g.add_edge(u, v, weight=random.uniform(0, 1))  # 權(quán)值為(0,1)
for (u,v,d) in g.edges(data=True):
    print(d['weight'])

輸出結(jié)果

0.9175521740544361
0.09841104142600388
0.9557658899707079
0.9256010898041206
0.2519120041349847
0.48370396192288767
0.8354304958648846
0.758094795660556
0.7910256982243447
0.6281003207621544
0.9801420646231339
0.7941450155753779
0.3851720075568309
0.802202234860892
0.7923045754263267
0.5270583359776736
0.9523963539542339
0.7474601472346581
0.044707615637251674
0.5349188097983026
0.6158693844408302
0.9456154478628968
0.7547788968185274
0.5648525235741113
0.6657063624514532
0.3109915743055601
0.3969190047820317
0.8763009836310122
0.7101598558464499
0.012225959063178693
0.700579386399397
0.8304116006624506
0.426518724548162
0.07244870577629914
0.36116795615537345
0.45781457416039606
0.25726914791707645
0.29778955309109023
0.8892096639219873
0.39322230058450647
0.5085017515323529
0.9597980742524421
0.08034618164792517
0.9143712112937563
0.17242150180445381
0.8914706349104955
0.8480034205451665
0.8217034225251223
0.45552196009659873
0.3909280195122691
0.45119988941609357
0.02984583822414133
0.14404544949710196
0.45459370924953857
0.10296953351890004
0.4948127850493056
0.9238669854480596
0.9399144983422378
0.919211279645529
0.24084759450828674
0.4410486851096309
0.7699702465967465
0.27749525807367836
0.9449097003790671
0.5019309896062647
0.42774455164796255
0.43988066338230847
0.7405733579782761
0.2308870299365694
0.12306785713306911
0.7139426386075743
0.2640769424119722
0.031149630992576394
0.07700734539599274
0.37034537464573547
0.7034898163898959
0.8557141929947621
0.06539918397508715

以上就是networkx庫繪制帶權(quán)圖給無權(quán)圖加權(quán)重輸出的詳細內(nèi)容,更多關(guān)于networkx帶權(quán)圖無權(quán)圖輸出的資料請關(guān)注腳本之家其它相關(guān)文章!

相關(guān)文章

  • Django分組聚合查詢實例分享

    Django分組聚合查詢實例分享

    在本篇文章里小編給大家分享的是關(guān)于Django分組聚合查詢實例內(nèi)容,需要的朋友們可以參考下。
    2020-04-04
  • 僅用500行Python代碼實現(xiàn)一個英文解析器的教程

    僅用500行Python代碼實現(xiàn)一個英文解析器的教程

    這篇文章主要介紹了僅用500行Python代碼實現(xiàn)一個英文解析器的教程,自然語言處理近來也是業(yè)界中一個熱門課題,作者為NLP方向的開發(fā)者,需要的朋友可以參考下
    2015-04-04
  • python3.8+django2+celery5.2.7環(huán)境準備(python測試開發(fā)django)

    python3.8+django2+celery5.2.7環(huán)境準備(python測試開發(fā)django)

    這篇文章主要介紹了python測試開發(fā)django之python3.8+django2+celery5.2.7環(huán)境準備工作,本文給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下
    2022-07-07
  • Pygame游戲開發(fā)之太空射擊實戰(zhàn)入門篇

    Pygame游戲開發(fā)之太空射擊實戰(zhàn)入門篇

    相信大多數(shù)8090后都玩過太空射擊游戲,在過去游戲不多的年代太空射擊自然屬于經(jīng)典好玩的一款了,今天我們來自己動手實現(xiàn)它,在編寫學習中回顧過往展望未來,下面開始入門篇
    2022-08-08
  • Python爬取哆啦A夢-伴我同行2豆瓣影評并生成詞云圖

    Python爬取哆啦A夢-伴我同行2豆瓣影評并生成詞云圖

    哆啦A夢系列是陪伴我,乃至陪伴了幾代人成長的故事.50年來,藤子·F·不二雄先生創(chuàng)造了竹蜻蜓,任意門,時光機器等等無數(shù)的新奇道具,讓大雄和他的小伙伴們經(jīng)歷了各種冒險,也經(jīng)歷了許多充滿戲劇性的啼笑皆非的日常.特意寫了這篇文章,教大家怎么繪制詞云圖,需要的朋友可以參考下
    2021-06-06
  • Python 爬蟲模擬登陸知乎

    Python 爬蟲模擬登陸知乎

    這篇文章主要介紹了Python 爬蟲模擬登陸知乎的相關(guān)資料,非常不錯,具有參考借鑒價值,需要的朋友可以參考下
    2016-09-09
  • Python語法學習之進程間的通信方式

    Python語法學習之進程間的通信方式

    進程在創(chuàng)建之后是沒有辦法獲取返回值的,但有的時候兩個進程之間需要進行相互之間的配合才能完成工作,這就需要通信的幫助。本文主要介紹了Python中進程間的通信方式,需要的可以了解一下
    2022-04-04
  • Python中單、雙下劃線的區(qū)別總結(jié)

    Python中單、雙下劃線的區(qū)別總結(jié)

    這篇文章主要給大家介紹了關(guān)于Python中單、雙下劃線區(qū)別的相關(guān)資料,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧。
    2017-12-12
  • TensorFlow通過文件名/文件夾名獲取標簽,并加入隊列的實現(xiàn)

    TensorFlow通過文件名/文件夾名獲取標簽,并加入隊列的實現(xiàn)

    今天小編就為大家分享一篇TensorFlow通過文件名/文件夾名獲取標簽,并加入隊列的實現(xiàn),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2020-02-02
  • 深入了解如何基于Python讀寫Kafka

    深入了解如何基于Python讀寫Kafka

    這篇文章主要介紹了深入了解如何基于Python讀寫Kafka,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友可以參考下
    2019-12-12

最新評論