Python中ROS和OpenCV結(jié)合處理圖像問題
一、安裝ROS-OpenCV
安裝OpenCVsudo apt-get install ros-kinetic-vision-opencv libopencv-dev python-opencv
ROS進(jìn)行圖像處理是依賴于OpenCV庫的。ROS通過一個叫CvBridge的功能包,將獲取的圖像數(shù)據(jù)轉(zhuǎn)換成OpenCV的格式,OpenCV處理之后,傳回給ROS進(jìn)行圖像顯示(應(yīng)用),如下圖:
二、簡單案例分析
我們使用ROS驅(qū)動獲取攝像頭數(shù)據(jù),將ROS獲得的數(shù)據(jù)通過CvBridge轉(zhuǎn)換成OpenCV需要的格式,調(diào)用OpenCV的算法庫對這個圖片進(jìn)行處理(如畫一個圓),然后返回給ROS進(jìn)行rviz顯示。
1.usb_cam.launch
首先我們建立一個launch文件,可以調(diào)用攝像頭驅(qū)動獲取圖像數(shù)據(jù)。運(yùn)行l(wèi)aunch文件roslaunch xxx(功能包名) usb_cam.launch
<launch> <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" > <param name="video_device" value="/dev/video0" /> <param name="image_width" value="1280" /> <param name="image_height" value="720" /> <param name="pixel_format" value="yuyv" /> <param name="camera_frame_id" value="usb_cam" /> <param name="io_method" value="mmap"/> </node> </launch>
2.cv_bridge_test.py
建立一個py文件,是python2的。實(shí)現(xiàn)接收ROS發(fā)的圖像信息,在圖像上畫一個圓后,返回給ROS。返回的話題名稱是cv_bridge_image
。運(yùn)行py文件rosrun xxx(功能包名) cv_bridge_test.py
如果出現(xiàn)權(quán)限不夠的情況,記得切換到py文件目錄下執(zhí)行:sudo chmod +x *.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import rospy import cv2 from cv_bridge import CvBridge, CvBridgeError from sensor_msgs.msg import Image class image_converter: def __init__(self): # 創(chuàng)建cv_bridge,聲明圖像的發(fā)布者和訂閱者 self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1) self.bridge = CvBridge() self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.callback) def callback(self,data): # 使用cv_bridge將ROS的圖像數(shù)據(jù)轉(zhuǎn)換成OpenCV的圖像格式 try: cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print e # 在opencv的顯示窗口中繪制一個圓,作為標(biāo)記 (rows,cols,channels) = cv_image.shape if cols > 60 and rows > 60 : cv2.circle(cv_image, (60, 60), 30, (0,0,255), -1) # 顯示Opencv格式的圖像 cv2.imshow("Image window", cv_image) cv2.waitKey(3) # 再將opencv格式額數(shù)據(jù)轉(zhuǎn)換成ros image格式的數(shù)據(jù)發(fā)布 try: self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8")) except CvBridgeError as e: print e if __name__ == '__main__': try: # 初始化ros節(jié)點(diǎn) rospy.init_node("cv_bridge_test") rospy.loginfo("Starting cv_bridge_test node") image_converter() rospy.spin() except KeyboardInterrupt: print "Shutting down cv_bridge_test node." cv2.destroyAllWindows()
3.rqt_image_view
在終端下執(zhí)行rqt_image_view,訂閱cv_bridge_image話題,可以發(fā)現(xiàn)OpenCV處理之后的圖像在ROS中顯示出來。
三、CvBridge相關(guān)API
1.imgmsg_to_cv2()
將ROS圖像消息轉(zhuǎn)換成OpenCV圖像數(shù)據(jù);
# 使用cv_bridge將ROS的圖像數(shù)據(jù)轉(zhuǎn)換成OpenCV的圖像格式 try: cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print e
2.cv2_to_imgmsg()
將OpenCV格式的圖像數(shù)據(jù)轉(zhuǎn)換成ROS圖像消息;
# 再將opencv格式額數(shù)據(jù)轉(zhuǎn)換成ros image格式的數(shù)據(jù)發(fā)布 try: self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8")) except CvBridgeError as e: print e
四、利用ROS+OpenCV實(shí)現(xiàn)人臉檢測案例
1.usb_cam.launch
這個launch和上一個案例一樣先打開攝像頭驅(qū)動獲取圖像數(shù)據(jù)。運(yùn)行l(wèi)aunch文件roslaunch xxx(功能包名) usb_cam.launch
<launch> <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" > <param name="video_device" value="/dev/video0" /> <param name="image_width" value="1280" /> <param name="image_height" value="720" /> <param name="pixel_format" value="yuyv" /> <param name="camera_frame_id" value="usb_cam" /> <param name="io_method" value="mmap"/> </node> </launch>
2.face_detector.launch
人臉檢測算法采用基于Harr特征的級聯(lián)分類器對象檢測算法,檢測效果并不佳。但是這里只是為了演示如何使用ROS和OpenCV進(jìn)行圖像處理,所以不必在乎算法本身效果。整個launch調(diào)用了一個py文件和兩個xml文件,分別如下:
2.1 launch
<launch> <node pkg="robot_vision" name="face_detector" type="face_detector.py" output="screen"> <remap from="input_rgb_image" to="/usb_cam/image_raw" /> <rosparam> haar_scaleFactor: 1.2 haar_minNeighbors: 2 haar_minSize: 40 haar_maxSize: 60 </rosparam> <param name="cascade_1" value="$(find robot_vision)/data/haar_detectors/haarcascade_frontalface_alt.xml" /> <param name="cascade_2" value="$(find robot_vision)/data/haar_detectors/haarcascade_profileface.xml" /> </node> </launch>
2.2 face_detector.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import rospy import cv2 import numpy as np from sensor_msgs.msg import Image, RegionOfInterest from cv_bridge import CvBridge, CvBridgeError class faceDetector: def __init__(self): rospy.on_shutdown(self.cleanup); # 創(chuàng)建cv_bridge self.bridge = CvBridge() self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1) # 獲取haar特征的級聯(lián)表的XML文件,文件路徑在launch文件中傳入 cascade_1 = rospy.get_param("~cascade_1", "") cascade_2 = rospy.get_param("~cascade_2", "") # 使用級聯(lián)表初始化haar特征檢測器 self.cascade_1 = cv2.CascadeClassifier(cascade_1) self.cascade_2 = cv2.CascadeClassifier(cascade_2) # 設(shè)置級聯(lián)表的參數(shù),優(yōu)化人臉識別,可以在launch文件中重新配置 self.haar_scaleFactor = rospy.get_param("~haar_scaleFactor", 1.2) self.haar_minNeighbors = rospy.get_param("~haar_minNeighbors", 2) self.haar_minSize = rospy.get_param("~haar_minSize", 40) self.haar_maxSize = rospy.get_param("~haar_maxSize", 60) self.color = (50, 255, 50) # 初始化訂閱rgb格式圖像數(shù)據(jù)的訂閱者,此處圖像topic的話題名可以在launch文件中重映射 self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1) def image_callback(self, data): # 使用cv_bridge將ROS的圖像數(shù)據(jù)轉(zhuǎn)換成OpenCV的圖像格式 try: cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") frame = np.array(cv_image, dtype=np.uint8) except CvBridgeError, e: print e # 創(chuàng)建灰度圖像 grey_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 創(chuàng)建平衡直方圖,減少光線影響 grey_image = cv2.equalizeHist(grey_image) # 嘗試檢測人臉 faces_result = self.detect_face(grey_image) # 在opencv的窗口中框出所有人臉區(qū)域 if len(faces_result)>0: for face in faces_result: x, y, w, h = face cv2.rectangle(cv_image, (x, y), (x+w, y+h), self.color, 2) # 將識別后的圖像轉(zhuǎn)換成ROS消息并發(fā)布 self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8")) def detect_face(self, input_image): # 首先匹配正面人臉的模型 if self.cascade_1: faces = self.cascade_1.detectMultiScale(input_image, self.haar_scaleFactor, self.haar_minNeighbors, cv2.CASCADE_SCALE_IMAGE, (self.haar_minSize, self.haar_maxSize)) # 如果正面人臉匹配失敗,那么就嘗試匹配側(cè)面人臉的模型 if len(faces) == 0 and self.cascade_2: faces = self.cascade_2.detectMultiScale(input_image, self.haar_scaleFactor, self.haar_minNeighbors, cv2.CASCADE_SCALE_IMAGE, (self.haar_minSize, self.haar_maxSize)) return faces def cleanup(self): print "Shutting down vision node." cv2.destroyAllWindows() if __name__ == '__main__': try: # 初始化ros節(jié)點(diǎn) rospy.init_node("face_detector") faceDetector() rospy.loginfo("Face detector is started..") rospy.loginfo("Please subscribe the ROS image.") rospy.spin() except KeyboardInterrupt: print "Shutting down face detector node." cv2.destroyAllWindows()
2.3 兩個xml文件
3.rqt_image_view
運(yùn)行完上述兩個launch文件后,在終端下執(zhí)行rqt_image_view,訂閱cv_bridge_image話題,可以發(fā)現(xiàn)OpenCV處理之后的圖像在ROS中顯示出來。
五、利用ROS+OpenCV實(shí)現(xiàn)幀差法物體追蹤
1.usb_cam.launch
這個launch和前兩個案例一樣先打開攝像頭驅(qū)動獲取圖像數(shù)據(jù)。運(yùn)行l(wèi)aunch文件roslaunch xxx(功能包名) usb_cam.launch
<launch> <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" > <param name="video_device" value="/dev/video0" /> <param name="image_width" value="1280" /> <param name="image_height" value="720" /> <param name="pixel_format" value="yuyv" /> <param name="camera_frame_id" value="usb_cam" /> <param name="io_method" value="mmap"/> </node> </launch>
2.motion_detector.launch
物體追蹤方法采用幀差法,追蹤效果并不佳。但是這里只是為了演示如何使用ROS和OpenCV進(jìn)行圖像處理,所以不必在乎算法本身效果。整個launch調(diào)用了一個py文件,如下:
2.1 launch
<launch> <node pkg="robot_vision" name="motion_detector" type="motion_detector.py" output="screen"> <remap from="input_rgb_image" to="/usb_cam/image_raw" /> <rosparam> minArea: 500 threshold: 25 </rosparam> </node> </launch>
2.2 motion_detector.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import rospy import cv2 import numpy as np from sensor_msgs.msg import Image, RegionOfInterest from cv_bridge import CvBridge, CvBridgeError class motionDetector: def __init__(self): rospy.on_shutdown(self.cleanup); # 創(chuàng)建cv_bridge self.bridge = CvBridge() self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1) # 設(shè)置參數(shù):最小區(qū)域、閾值 self.minArea = rospy.get_param("~minArea", 500) self.threshold = rospy.get_param("~threshold", 25) self.firstFrame = None self.text = "Unoccupied" # 初始化訂閱rgb格式圖像數(shù)據(jù)的訂閱者,此處圖像topic的話題名可以在launch文件中重映射 self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1) def image_callback(self, data): # 使用cv_bridge將ROS的圖像數(shù)據(jù)轉(zhuǎn)換成OpenCV的圖像格式 try: cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") frame = np.array(cv_image, dtype=np.uint8) except CvBridgeError, e: print e # 創(chuàng)建灰度圖像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (21, 21), 0) # 使用兩幀圖像做比較,檢測移動物體的區(qū)域 if self.firstFrame is None: self.firstFrame = gray return frameDelta = cv2.absdiff(self.firstFrame, gray) thresh = cv2.threshold(frameDelta, self.threshold, 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=2) binary, cnts, hierarchy= cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in cnts: # 如果檢測到的區(qū)域小于設(shè)置值,則忽略 if cv2.contourArea(c) < self.minArea: continue # 在輸出畫面上框出識別到的物體 (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(frame, (x, y), (x + w, y + h), (50, 255, 50), 2) self.text = "Occupied" # 在輸出畫面上打當(dāng)前狀態(tài)和時間戳信息 cv2.putText(frame, "Status: {}".format(self.text), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) # 將識別后的圖像轉(zhuǎn)換成ROS消息并發(fā)布 self.image_pub.publish(self.bridge.cv2_to_imgmsg(frame, "bgr8")) def cleanup(self): print "Shutting down vision node." cv2.destroyAllWindows() if __name__ == '__main__': try: # 初始化ros節(jié)點(diǎn) rospy.init_node("motion_detector") rospy.loginfo("motion_detector node is started...") rospy.loginfo("Please subscribe the ROS image.") motionDetector() rospy.spin() except KeyboardInterrupt: print "Shutting down motion detector node." cv2.destroyAllWindows()
3.rqt_image_view
運(yùn)行完上述兩個launch文件后,在終端下執(zhí)行rqt_image_view,訂閱cv_bridge_image話題,可以發(fā)現(xiàn)OpenCV處理之后的圖像在ROS中顯示出來。(鑒于我的測試環(huán)境比較糟糕,并且這個算法本身精度不高,就不展示最終效果了)
到此這篇關(guān)于Python中ROS和OpenCV結(jié)合處理圖像問題的文章就介紹到這了,更多相關(guān)ROS和OpenCV處理圖像內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python:接口間數(shù)據(jù)傳遞與調(diào)用方法
今天小編就為大家分享一篇python:接口間數(shù)據(jù)傳遞與調(diào)用方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-12-12Python中使用多進(jìn)程來實(shí)現(xiàn)并行處理的方法小結(jié)
本篇文章主要介紹了Python中使用多進(jìn)程來實(shí)現(xiàn)并行處理的方法小結(jié),具有一定的參考價值,感興趣的小伙伴們可以參考一下2017-08-08python strip() 函數(shù)和 split() 函數(shù)的詳解及實(shí)例
這篇文章主要介紹了 python strip() 函數(shù)和 split() 函數(shù)的詳解及實(shí)例的相關(guān)資料,需要的朋友可以參考下2017-02-02Python 動態(tài)導(dǎo)入對象,importlib.import_module()的使用方法
今天小編就為大家分享一篇Python 動態(tài)導(dǎo)入對象,importlib.import_module()的使用方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-08-08Python中用try-except-finally處理異常問題
這篇文章主要介紹了Python中用try-except-finally處理異常問題,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2022-12-12Python中的默認(rèn)參數(shù)實(shí)例分析
這篇文章主要介紹了Python中的默認(rèn)參數(shù)實(shí)例分析,分享了相關(guān)代碼示例,小編覺得還是挺不錯的,具有一定借鑒價值,需要的朋友可以參考下2018-01-01使用python-cv2實(shí)現(xiàn)視頻的分解與合成的示例代碼
這篇文章主要介紹了使用python-cv2實(shí)現(xiàn)視頻的分解與合成的示例代碼,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-10-10