yolov5中head修改為decouple?head詳解
yolov5的head修改為decouple head
yolox的decoupled head結(jié)構(gòu)
本來(lái)想將yolov5的head修改為decoupled head,與yolox的decouple head對(duì)齊,但是沒(méi)注意,該成了如下結(jié)構(gòu):
感謝少年肩上楊柳依依的指出,如還有問(wèn)題歡迎指出
1.修改models下的yolo.py文件中的Detect
class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) # self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.m_box = nn.ModuleList(nn.Conv2d(256, 4 * self.na, 1) for x in ch) # output conv self.m_conf = nn.ModuleList(nn.Conv2d(256, 1 * self.na, 1) for x in ch) # output conv self.m_labels = nn.ModuleList(nn.Conv2d(256, self.nc * self.na, 1) for x in ch) # output conv self.base_conv = nn.ModuleList(BaseConv(in_channels = x, out_channels = 256, ksize = 1, stride = 1) for x in ch) self.cls_convs = nn.ModuleList(BaseConv(in_channels = 256, out_channels = 256, ksize = 3, stride = 1) for x in ch) self.reg_convs = nn.ModuleList(BaseConv(in_channels = 256, out_channels = 256, ksize = 3, stride = 1) for x in ch) # self.m = nn.ModuleList(nn.Conv2d(x, 4 * self.na, 1) for x in ch, nn.Conv2d(x, 1 * self.na, 1) for x in ch,nn.Conv2d(x, self.nc * self.na, 1) for x in ch) self.inplace = inplace # use in-place ops (e.g. slice assignment)self.ch = ch def forward(self, x): z = [] # inference output for i in range(self.nl): # # x[i] = self.m[i](x[i]) # convs # print("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", i) # print(x[i].shape) # print(self.base_conv[i]) # print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") x_feature = self.base_conv[i](x[i]) # x_feature = x[i] cls_feature = self.cls_convs[i](x_feature) reg_feature = self.reg_convs[i](x_feature) # reg_feature = x_feature m_box = self.m_box[i](reg_feature) m_conf = self.m_conf[i](reg_feature) m_labels = self.m_labels[i](cls_feature) x[i] = torch.cat((m_box,m_conf, m_labels),1) bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x)
2.在yolo.py中添加
def get_activation(name="silu", inplace=True): if name == "silu": module = nn.SiLU(inplace=inplace) elif name == "relu": module = nn.ReLU(inplace=inplace) elif name == "lrelu": module = nn.LeakyReLU(0.1, inplace=inplace) else: raise AttributeError("Unsupported act type: {}".format(name)) return module class BaseConv(nn.Module): """A Conv2d -> Batchnorm -> silu/leaky relu block""" def __init__( self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu" ): super().__init__() # same padding pad = (ksize - 1) // 2 self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=ksize, stride=stride, padding=pad, groups=groups, bias=bias, ) self.bn = nn.BatchNorm2d(out_channels) self.act = get_activation(act, inplace=True) def forward(self, x): # print(self.bn(self.conv(x)).shape) return self.act(self.bn(self.conv(x))) # return self.bn(self.conv(x)) def fuseforward(self, x): return self.act(self.conv(x))
decouple head的特點(diǎn):
由于訓(xùn)練模型時(shí),應(yīng)該是channels = 256的地方改成了channels = x(失誤),所以在decoupled head的部分參數(shù)量比yolox要大一些,以下的結(jié)果是在channels= x的情況下得出
比yolov5s參數(shù)多,計(jì)算量大,在我自己的2.5萬(wàn)的數(shù)據(jù)量下map提升了3%多
1.模型給出的目標(biāo)cls較高,需要將conf的閾值設(shè)置較大(0.5),不然準(zhǔn)確率較低
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
2.對(duì)于少樣本的檢測(cè)效果較好,召回率的提升比準(zhǔn)確率多
3.在conf設(shè)置為0.25時(shí),召回率比yolov5s高,但是準(zhǔn)確率低;在conf設(shè)置為0.5時(shí),召回率與準(zhǔn)確率比yolov5s高
4.比yolov5s參數(shù)多,計(jì)算量大,在2.5萬(wàn)的數(shù)據(jù)量下map提升了3%多
對(duì)于decouple head的改進(jìn)
改進(jìn):
1.將紅色框中的conv去掉,縮小參數(shù)量和計(jì)算量;
2.channels =256 ,512 ,1024是考慮不增加參數(shù),不進(jìn)行featuremap的信息壓縮
class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x)
特點(diǎn)
1.模型給出的目標(biāo)cls較高,需要將conf的閾值設(shè)置較大(0.4),不然準(zhǔn)確率較低
2.對(duì)于少樣本的檢測(cè)效果較好,準(zhǔn)確率的提升比召回率多
3. 準(zhǔn)確率的提升比召回率多,
該改進(jìn)不如上面的模型提升多,但是參數(shù)量小,計(jì)算量小少9Gflop,占用顯存少
decoupled head指標(biāo)提升的原因:由于yolov5s原本的head不能完全的提取featuremap中的信息,decoupled head能夠較為充分的提取featuremap的信息;
疑問(wèn)
為什么decoupled head目標(biāo)的cls會(huì)比較高,沒(méi)想明白
為什么去掉base_conv,召回率要比準(zhǔn)確率提升少
總結(jié)
到此這篇關(guān)于yolov5中head修改為decouple head的文章就介紹到這了,更多相關(guān)yolov5 head修改為decouple head內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Django 使用easy_thumbnails壓縮上傳的圖片方法
今天小編就為大家分享一篇Django 使用easy_thumbnails壓縮上傳的圖片方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-07-07python中的TCP(傳輸控制協(xié)議)用法實(shí)例分析
這篇文章主要介紹了python中的TCP(傳輸控制協(xié)議)用法,結(jié)合完整實(shí)例形式分析了Python基于TCP協(xié)議的服務(wù)器端與客戶端相關(guān)實(shí)現(xiàn)技巧及操作注意事項(xiàng),需要的朋友可以參考下2019-11-11Python發(fā)送郵件測(cè)試報(bào)告操作實(shí)例詳解
這篇文章主要介紹了Python發(fā)送郵件測(cè)試報(bào)告操作,結(jié)合實(shí)例形式較為詳細(xì)的分析了Python郵件發(fā)送相關(guān)模塊使用及操作注意事項(xiàng),需要的朋友可以參考下2018-12-12Python網(wǎng)絡(luò)編程中urllib2模塊的用法總結(jié)
使用urllib2模塊進(jìn)行基于url的HTTP請(qǐng)求等操作大家也許都比較熟悉,這里我們?cè)偕钊雭?lái)了解一下urllib2針對(duì)HTTP的異常處理相關(guān)功能,一起來(lái)看一下Python網(wǎng)絡(luò)編程中urllib2模塊的用法總結(jié):2016-07-07Python爬蟲(chóng)和反爬技術(shù)過(guò)程詳解
Python爬蟲(chóng)是當(dāng)下最火的一種獲取數(shù)據(jù)的方式,當(dāng)我們對(duì)一些小型網(wǎng)站進(jìn)行爬取的時(shí)候往往沒(méi)什么阻礙,而當(dāng)我們爬取大型網(wǎng)站的時(shí)候經(jīng)常會(huì)遇到禁止訪問(wèn)、封禁IP的情況,這也是我們觸發(fā)反爬機(jī)制的體現(xiàn),本文來(lái)帶領(lǐng)大家了解幾種簡(jiǎn)單高效的反爬對(duì)策2021-09-09