python+opencv實現(xiàn)目標(biāo)跟蹤過程
更新時間:2022年06月21日 09:23:38 作者:馮子玉
這篇文章主要介紹了python+opencv實現(xiàn)目標(biāo)跟蹤過程,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教
python opencv實現(xiàn)目標(biāo)跟蹤
python-opencv3.0新增了一些比較有用的追蹤器算法
這里根據(jù)官網(wǎng)示例寫了一個追蹤器類
程序只能運行在安裝有opencv3.0以上版本和對應(yīng)的contrib模塊的python解釋器
#encoding=utf-8
import cv2
from items import MessageItem
import time
import numpy as np
'''
監(jiān)視者模塊,負責(zé)入侵檢測,目標(biāo)跟蹤
'''
class WatchDog(object):
#入侵檢測者模塊,用于入侵檢測
def __init__(self,frame=None):
#運動檢測器構(gòu)造函數(shù)
self._background = None
if frame is not None:
self._background = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)
self.es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))
def isWorking(self):
#運動檢測器是否工作
return self._background is not None
def startWorking(self,frame):
#運動檢測器開始工作
if frame is not None:
self._background = cv2.GaussianBlur(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), (21, 21), 0)
def stopWorking(self):
#運動檢測器結(jié)束工作
self._background = None
def analyze(self,frame):
#運動檢測
if frame is None or self._background is None:
return
sample_frame = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)
diff = cv2.absdiff(self._background,sample_frame)
diff = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)[1]
diff = cv2.dilate(diff, self.es, iterations=2)
image, cnts, hierarchy = cv2.findContours(diff.copy(),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
coordinate = []
bigC = None
bigMulti = 0
for c in cnts:
if cv2.contourArea(c) < 1500:
continue
(x,y,w,h) = cv2.boundingRect(c)
if w * h > bigMulti:
bigMulti = w * h
bigC = ((x,y),(x+w,y+h))
if bigC:
cv2.rectangle(frame, bigC[0],bigC[1], (255,0,0), 2, 1)
coordinate.append(bigC)
message = {"coord":coordinate}
message['msg'] = None
return MessageItem(frame,message)
class Tracker(object):
'''
追蹤者模塊,用于追蹤指定目標(biāo)
'''
def __init__(self,tracker_type = "BOOSTING",draw_coord = True):
'''
初始化追蹤器種類
'''
#獲得opencv版本
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
self.tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
self.tracker_type = tracker_type
self.isWorking = False
self.draw_coord = draw_coord
#構(gòu)造追蹤器
if int(minor_ver) < 3:
self.tracker = cv2.Tracker_create(tracker_type)
else:
if tracker_type == 'BOOSTING':
self.tracker = cv2.TrackerBoosting_create()
if tracker_type == 'MIL':
self.tracker = cv2.TrackerMIL_create()
if tracker_type == 'KCF':
self.tracker = cv2.TrackerKCF_create()
if tracker_type == 'TLD':
self.tracker = cv2.TrackerTLD_create()
if tracker_type == 'MEDIANFLOW':
self.tracker = cv2.TrackerMedianFlow_create()
if tracker_type == 'GOTURN':
self.tracker = cv2.TrackerGOTURN_create()
def initWorking(self,frame,box):
'''
追蹤器工作初始化
frame:初始化追蹤畫面
box:追蹤的區(qū)域
'''
if not self.tracker:
raise Exception("追蹤器未初始化")
status = self.tracker.init(frame,box)
if not status:
raise Exception("追蹤器工作初始化失敗")
self.coord = box
self.isWorking = True
def track(self,frame):
'''
開啟追蹤
'''
message = None
if self.isWorking:
status,self.coord = self.tracker.update(frame)
if status:
message = {"coord":[((int(self.coord[0]), int(self.coord[1])),(int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3])))]}
if self.draw_coord:
p1 = (int(self.coord[0]), int(self.coord[1]))
p2 = (int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3]))
cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
message['msg'] = "is tracking"
return MessageItem(frame,message)
class ObjectTracker(object):
def __init__(self,dataSet):
self.cascade = cv2.CascadeClassifier(dataSet)
def track(self,frame):
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
faces = self.cascade.detectMultiScale(gray,1.03,5)
for (x,y,w,h) in faces:
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)
return frame
if __name__ == '__main__' :
a = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
tracker = Tracker(tracker_type="KCF")
video = cv2.VideoCapture(0)
ok, frame = video.read()
bbox = cv2.selectROI(frame, False)
tracker.initWorking(frame,bbox)
while True:
_,frame = video.read();
if(_):
item = tracker.track(frame);
cv2.imshow("track",item.getFrame())
k = cv2.waitKey(1) & 0xff
if k == 27:
break#encoding=utf-8
import json
from utils import IOUtil
'''
信息封裝類
'''
class MessageItem(object):
#用于封裝信息的類,包含圖片和其他信息
def __init__(self,frame,message):
self._frame = frame
self._message = message
def getFrame(self):
#圖片信息
return self._frame
def getMessage(self):
#文字信息,json格式
return self._message
def getBase64Frame(self):
#返回base64格式的圖片,將BGR圖像轉(zhuǎn)化為RGB圖像
jepg = IOUtil.array_to_bytes(self._frame[...,::-1])
return IOUtil.bytes_to_base64(jepg)
def getBase64FrameByte(self):
#返回base64格式圖片的bytes
return bytes(self.getBase64Frame())
def getJson(self):
#獲得json數(shù)據(jù)格式
dicdata = {"frame":self.getBase64Frame().decode(),"message":self.getMessage()}
return json.dumps(dicdata)
def getBinaryFrame(self):
return IOUtil.array_to_bytes(self._frame[...,::-1])運行之后在第一幀圖像上選擇要追蹤的部分,這里測試了一下使用KCF算法的追蹤器

更新:忘記放utils,給大家造成的困擾深表歉意
#encoding=utf-8
import time
import numpy
import base64
import os
import logging
import sys
from settings import *
from PIL import Image
from io import BytesIO
#工具類
class IOUtil(object):
#流操作工具類
@staticmethod
def array_to_bytes(pic,formatter="jpeg",quality=70):
'''
靜態(tài)方法,將numpy數(shù)組轉(zhuǎn)化二進制流
:param pic: numpy數(shù)組
:param format: 圖片格式
:param quality:壓縮比,壓縮比越高,產(chǎn)生的二進制數(shù)據(jù)越短
:return:
'''
stream = BytesIO()
picture = Image.fromarray(pic)
picture.save(stream,format=formatter,quality=quality)
jepg = stream.getvalue()
stream.close()
return jepg
@staticmethod
def bytes_to_base64(byte):
'''
靜態(tài)方法,bytes轉(zhuǎn)base64編碼
:param byte:
:return:
'''
return base64.b64encode(byte)
@staticmethod
def transport_rgb(frame):
'''
將bgr圖像轉(zhuǎn)化為rgb圖像,或者將rgb圖像轉(zhuǎn)化為bgr圖像
'''
return frame[...,::-1]
@staticmethod
def byte_to_package(bytes,cmd,var=1):
'''
將每一幀的圖片流的二進制數(shù)據(jù)進行分包
:param byte: 二進制文件
:param cmd:命令
:return:
'''
head = [ver,len(byte),cmd]
headPack = struct.pack("!3I", *head)
senddata = headPack+byte
return senddata
@staticmethod
def mkdir(filePath):
'''
創(chuàng)建文件夾
'''
if not os.path.exists(filePath):
os.mkdir(filePath)
@staticmethod
def countCenter(box):
'''
計算一個矩形的中心
'''
return (int(abs(box[0][0] - box[1][0])*0.5) + box[0][0],int(abs(box[0][1] - box[1][1])*0.5) +box[0][1])
@staticmethod
def countBox(center):
'''
根據(jù)兩個點計算出,x,y,c,r
'''
return (center[0][0],center[0][1],center[1][0]-center[0][0],center[1][1]-center[0][1])
@staticmethod
def getImageFileName():
return time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())+'.png'
#構(gòu)造日志
logger = logging.getLogger(LOG_NAME)
formatter = logging.Formatter(LOG_FORMATTER)
IOUtil.mkdir(LOG_DIR);
file_handler = logging.FileHandler(LOG_DIR + LOG_FILE,encoding='utf-8')
file_handler.setFormatter(formatter)
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
VScode查看python f.write()的文件亂碼問題及解決方法
這篇文章主要介紹了VScode查看python f.write()的文件亂碼問題及解決方法,本文通過圖文并茂的形式給大家分享解決方法,需要的朋友可以參考下2023-02-02
Ubuntu18.04中Python2.7與Python3.6環(huán)境切換
這篇文章主要為大家詳細介紹了Ubuntu18.04中Python2.7與Python3.6環(huán)境切換,具有一定的參考價值,感興趣的小伙伴們可以參考一下2019-06-06
Python數(shù)據(jù)分析之pandas比較操作
比較操作是很簡單的基礎(chǔ)知識,不過Pandas中的比較操作有一些特殊的點,本文介紹的非常詳細,對正在學(xué)習(xí)python的小伙伴們很有幫助.需要的朋友可以參考下2021-05-05

