欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

PyTorch中torch.nn.Linear實(shí)例詳解

 更新時(shí)間:2022年06月21日 14:53:24   作者:大黑山修道  
torch.nn是包含了構(gòu)筑神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)基本元素的包,在這個(gè)包中可以找到任意的神經(jīng)網(wǎng)絡(luò)層,下面這篇文章主要給大家介紹了關(guān)于PyTorch中torch.nn.Linear的相關(guān)資料,文中通過實(shí)例代碼介紹的非常詳細(xì),需要的朋友可以參考下

前言

在學(xué)習(xí)transformer時(shí),遇到過非常頻繁的nn.Linear()函數(shù),這里對(duì)nn.Linear進(jìn)行一個(gè)詳解。
參考:https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html

1. nn.Linear的原理:

從名稱就可以看出來,nn.Linear表示的是線性變換,原型就是初級(jí)數(shù)學(xué)里學(xué)到的線性函數(shù):y=kx+b

不過在深度學(xué)習(xí)中,變量都是多維張量,乘法就是矩陣乘法,加法就是矩陣加法,因此nn.Linear()運(yùn)行的真正的計(jì)算就是:

output = weight @ input + bias

@: 在python中代表矩陣乘法

input: 表示輸入的Tensor,可以有多個(gè)維度

weights: 表示可學(xué)習(xí)的權(quán)重,shape=(output_feature,in_feature)

bias: 表示科學(xué)習(xí)的偏置,shape=(output_feature)

in_feature: nn.Linear 初始化的第一個(gè)參數(shù),即輸入Tensor最后一維的通道數(shù)

out_feature: nn.Linear 初始化的第二個(gè)參數(shù),即返回Tensor最后一維的通道數(shù)

output: 表示輸入的Tensor,可以有多個(gè)維度

2. nn.Linear的使用:

常用頭文件:import torch.nn as nn

nn.Linear()的初始化:

nn.Linear(in_feature,out_feature,bias)

in_feature: int型, 在forward中輸入Tensor最后一維的通道數(shù)

out_feature: int型, 在forward中輸出Tensor最后一維的通道數(shù)

bias: bool型, Linear線性變換中是否添加bias偏置

nn.Linear()的執(zhí)行:(即執(zhí)行forward函數(shù))

out=nn.Linear(input)

input: 表示輸入的Tensor,可以有多個(gè)維度

output: 表示輸入的Tensor,可以有多個(gè)維度

舉例:

2維 Tensor

m = nn.Linear(20, 40)
input = torch.randn(128, 20)
output = m(input)
print(output.size())  # [(128,40])

4維 Tensor:

m = nn.Linear(128, 64)
input = torch.randn(512, 3,128,128)
output = m(input)
print(output.size())  # [(512, 3,128,64))

3. nn.Linear的源碼定義:

import math
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn.parameter import Parameter, UninitializedParameter
from  torch.nn import functional as F
from  torch.nn import init
# from .lazy import LazyModuleMixin

class myLinear(nn.Module):
    r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`

    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.

    Args:
        in_features: size of each input sample
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input: :math:`(*, H_{in})` where :math:`*` means any number of
          dimensions including none and :math:`H_{in} = \text{in\_features}`.
        - Output: :math:`(*, H_{out})` where all but the last dimension
          are the same shape as the input and :math:`H_{out} = \text{out\_features}`.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`

    Examples::

        >>> m = nn.Linear(20, 30)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 30])
    """
    __constants__ = ['in_features', 'out_features']
    in_features: int
    out_features: int
    weight: Tensor

    def __init__(self, in_features: int, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(myLinear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))
        if bias:
            self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self) -> None:
        # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
        # uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see
        # https://github.com/pytorch/pytorch/issues/57109
        print("333")

        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
            init.uniform_(self.bias, -bound, bound)

    def forward(self, input: Tensor) -> Tensor:
        print("111")
        print("self.weight.shape=(", )
        return F.linear(input, self.weight, self.bias)

    def extra_repr(self) -> str:
        print("www")

        return 'in_features={}, out_features={}, bias={}'.format(
            self.in_features, self.out_features, self.bias is not None
        )


# m = myLinear(20, 40)
# input = torch.randn(128, 40, 20)
# output = m(input)
# print(output.size())

m = myLinear(128, 64)
input = torch.randn(512, 3,128,128)
output = m(input)
print(output.size())  # [(512, 3,128,64))

4. nn.Linear的官方源碼:

import math

import torch
from torch import Tensor
from torch.nn.parameter import Parameter, UninitializedParameter
from .. import functional as F
from .. import init
from .module import Module
from .lazy import LazyModuleMixin


class Identity(Module):
    r"""A placeholder identity operator that is argument-insensitive.

    Args:
        args: any argument (unused)
        kwargs: any keyword argument (unused)

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    Examples::

        >>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 20])

    """
    def __init__(self, *args, **kwargs):
        super(Identity, self).__init__()

    def forward(self, input: Tensor) -> Tensor:
        return input


class Linear(Module):
    r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`

    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.

    Args:
        in_features: size of each input sample
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input: :math:`(*, H_{in})` where :math:`*` means any number of
          dimensions including none and :math:`H_{in} = \text{in\_features}`.
        - Output: :math:`(*, H_{out})` where all but the last dimension
          are the same shape as the input and :math:`H_{out} = \text{out\_features}`.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`

    Examples::

        >>> m = nn.Linear(20, 30)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 30])
    """
    __constants__ = ['in_features', 'out_features']
    in_features: int
    out_features: int
    weight: Tensor

    def __init__(self, in_features: int, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))
        if bias:
            self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self) -> None:
        # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
        # uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see
        # https://github.com/pytorch/pytorch/issues/57109
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
            init.uniform_(self.bias, -bound, bound)

    def forward(self, input: Tensor) -> Tensor:
        return F.linear(input, self.weight, self.bias)

    def extra_repr(self) -> str:
        return 'in_features={}, out_features={}, bias={}'.format(
            self.in_features, self.out_features, self.bias is not None
        )


# This class exists solely to avoid triggering an obscure error when scripting
# an improperly quantized attention layer. See this issue for details:
# https://github.com/pytorch/pytorch/issues/58969
# TODO: fail fast on quantization API usage error, then remove this class
# and replace uses of it with plain Linear
class NonDynamicallyQuantizableLinear(Linear):
    def __init__(self, in_features: int, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        super().__init__(in_features, out_features, bias=bias,
                         device=device, dtype=dtype)



[docs]class Bilinear(Module):
    r"""Applies a bilinear transformation to the incoming data:
    :math:`y = x_1^T A x_2 + b`

    Args:
        in1_features: size of each first input sample
        in2_features: size of each second input sample
        out_features: size of each output sample
        bias: If set to False, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input1: :math:`(*, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` and
          :math:`*` means any number of additional dimensions including none. All but the last dimension
          of the inputs should be the same.
        - Input2: :math:`(*, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`.
        - Output: :math:`(*, H_{out})` where :math:`H_{out}=\text{out\_features}`
          and all but the last dimension are the same shape as the input.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`.
            The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in1\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
                :math:`k = \frac{1}{\text{in1\_features}}`

    Examples::

        >>> m = nn.Bilinear(20, 30, 40)
        >>> input1 = torch.randn(128, 20)
        >>> input2 = torch.randn(128, 30)
        >>> output = m(input1, input2)
        >>> print(output.size())
        torch.Size([128, 40])
    """
    __constants__ = ['in1_features', 'in2_features', 'out_features']
    in1_features: int
    in2_features: int
    out_features: int
    weight: Tensor

    def __init__(self, in1_features: int, in2_features: int, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(Bilinear, self).__init__()
        self.in1_features = in1_features
        self.in2_features = in2_features
        self.out_features = out_features
        self.weight = Parameter(torch.empty((out_features, in1_features, in2_features), **factory_kwargs))

        if bias:
            self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self) -> None:
        bound = 1 / math.sqrt(self.weight.size(1))
        init.uniform_(self.weight, -bound, bound)
        if self.bias is not None:
            init.uniform_(self.bias, -bound, bound)

    def forward(self, input1: Tensor, input2: Tensor) -> Tensor:
        return F.bilinear(input1, input2, self.weight, self.bias)

    def extra_repr(self) -> str:
        return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format(
            self.in1_features, self.in2_features, self.out_features, self.bias is not None
        )



class LazyLinear(LazyModuleMixin, Linear):
    r"""A :class:`torch.nn.Linear` module where `in_features` is inferred.

    In this module, the `weight` and `bias` are of :class:`torch.nn.UninitializedParameter`
    class. They will be initialized after the first call to ``forward`` is done and the
    module will become a regular :class:`torch.nn.Linear` module. The ``in_features`` argument
    of the :class:`Linear` is inferred from the ``input.shape[-1]``.

    Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
    on lazy modules and their limitations.

    Args:
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`


    """

    cls_to_become = Linear  # type: ignore[assignment]
    weight: UninitializedParameter
    bias: UninitializedParameter  # type: ignore[assignment]

    def __init__(self, out_features: int, bias: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        # bias is hardcoded to False to avoid creating tensor
        # that will soon be overwritten.
        super().__init__(0, 0, False)
        self.weight = UninitializedParameter(**factory_kwargs)
        self.out_features = out_features
        if bias:
            self.bias = UninitializedParameter(**factory_kwargs)

    def reset_parameters(self) -> None:
        if not self.has_uninitialized_params() and self.in_features != 0:
            super().reset_parameters()

    def initialize_parameters(self, input) -> None:  # type: ignore[override]
        if self.has_uninitialized_params():
            with torch.no_grad():
                self.in_features = input.shape[-1]
                self.weight.materialize((self.out_features, self.in_features))
                if self.bias is not None:
                    self.bias.materialize((self.out_features,))
                self.reset_parameters()
# TODO: PartialLinear - maybe in sparse?

補(bǔ)充:許多細(xì)節(jié)需要聲明

1)nn.Linear是一個(gè)類,使用時(shí)進(jìn)行類的實(shí)例化

2)實(shí)例化的時(shí)候,nn.Linear需要輸入兩個(gè)參數(shù),in_features為上一層神經(jīng)元的個(gè)數(shù),out_features為這一層的神經(jīng)元個(gè)數(shù)

3)不需要定義w和b。所有nn.Module的子類,形如nn.XXX的層,都會(huì)在實(shí)例化的同時(shí)隨機(jī)生成w和b的初始值。所以實(shí)例化之后,我們就可以調(diào)用屬性weight和bias來查看生成的w和b。其中w是必然會(huì)生成的,b是我們可以控制是否要生成的。在nn.Linear類中,有參數(shù)bias,默認(rèn) bias = True。如果我們希望不擬合常量b,在實(shí)例化時(shí)將參數(shù)bias設(shè)置為False即可。

4)由于w和b是隨機(jī)生成的,所以同樣的代碼多次運(yùn)行后的結(jié)果是不一致的。如果我們希望控制隨機(jī)性,則可以使用torch中的random類。如:torch.random.manual_seed(420) #人為設(shè)置隨機(jī)數(shù)種子

5)由于不需要定義常量b,因此在特征張量中,不需要留出與常數(shù)項(xiàng)相乘的那一列,只需要輸入特征張量。

6)輸入層只有一層,并且輸入層的結(jié)構(gòu)(神經(jīng)元的個(gè)數(shù))由輸入的特征張量X決定,因此在PyTorch中構(gòu)筑神經(jīng)網(wǎng)絡(luò)時(shí),不需要定義輸入層。

7)實(shí)例化之后,將特征張量輸入到實(shí)例化后的類中。

總結(jié)

到此這篇關(guān)于PyTorch中torch.nn.Linear實(shí)例詳解的文章就介紹到這了,更多相關(guān)PyTorch torch.nn.Linear詳解內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • Tensorflow之MNIST CNN實(shí)現(xiàn)并保存、加載模型

    Tensorflow之MNIST CNN實(shí)現(xiàn)并保存、加載模型

    這篇文章主要為大家詳細(xì)介紹了Tensorflow之MNIST CNN實(shí)現(xiàn)并保存、加載模型,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2020-06-06
  • Python 3.10 中 6 個(gè)興奮的新特性

    Python 3.10 中 6 個(gè)興奮的新特性

    Python 是當(dāng)今最流行的編程語言之一其流行的原因有很多種,Python 3.10 有幾個(gè)新的很酷的功能,使得使用 Python 成為一種更好的體驗(yàn)。在本文中,我將與您分享 6 個(gè)讓我最興奮的新特性,感興趣的朋友一起看看吧
    2021-10-10
  • Python爬蟲之PhantomJS和handless的使用詳解

    Python爬蟲之PhantomJS和handless的使用詳解

    這篇文章主要介紹了Python爬蟲之PhantomJS和handless的使用詳解,PhantomJS是一個(gè)基于Webkit的headless瀏覽器,它會(huì)把網(wǎng)站加載到內(nèi)存并使用webkit來編譯解釋執(zhí)行頁面上的JavaScript代碼,由于不進(jìn)行css和gui渲染、不展示圖形界面,需要的朋友可以參考下
    2023-09-09
  • 如何使用Python對(duì)Excel表格進(jìn)行拼接合并

    如何使用Python對(duì)Excel表格進(jìn)行拼接合并

    這篇文章主要介紹了Python處理EXCEL基礎(chǔ)操作篇3用Python對(duì)Excel表格進(jìn)行拼接合并,文中提供了解決思路和部分實(shí)現(xiàn)代碼,需要的朋友可以參考下
    2023-03-03
  • Python新手在作用域方面經(jīng)常容易碰到的問題

    Python新手在作用域方面經(jīng)常容易碰到的問題

    這篇文章主要介紹了Python新手在作用域方面經(jīng)常容易碰到的問題,全局變量和局部變量方面的知識(shí)在Python學(xué)習(xí)當(dāng)中是基礎(chǔ)中的基礎(chǔ),需要的朋友可以參考下
    2015-04-04
  • Python使用os.listdir()和os.walk()獲取文件路徑與文件下所有目錄的方法

    Python使用os.listdir()和os.walk()獲取文件路徑與文件下所有目錄的方法

    今天小編就為大家分享一篇關(guān)于Python使用os.listdir()和os.walk()獲取文件路徑與文件下所有目錄的方法,小編覺得內(nèi)容挺不錯(cuò)的,現(xiàn)在分享給大家,具有很好的參考價(jià)值,需要的朋友一起跟隨小編來看看吧
    2019-04-04
  • python實(shí)現(xiàn)隨機(jī)調(diào)用一個(gè)瀏覽器打開網(wǎng)頁

    python實(shí)現(xiàn)隨機(jī)調(diào)用一個(gè)瀏覽器打開網(wǎng)頁

    下面小編就為大家分享一篇python實(shí)現(xiàn)隨機(jī)調(diào)用一個(gè)瀏覽器打開網(wǎng)頁,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧
    2018-04-04
  • Python中內(nèi)置的日志模塊logging用法詳解

    Python中內(nèi)置的日志模塊logging用法詳解

    Python的logging模塊提供了記錄程序運(yùn)行情況的日志功能,類似于Apache的log4j,很好很強(qiáng)大,這里我們就來看一下Python中內(nèi)置的日志模塊logging用法詳解
    2016-07-07
  • 講解Python中運(yùn)算符使用時(shí)的優(yōu)先級(jí)

    講解Python中運(yùn)算符使用時(shí)的優(yōu)先級(jí)

    這篇文章主要介紹了講解Python中運(yùn)算符使用時(shí)的優(yōu)先級(jí),是Python學(xué)習(xí)當(dāng)中的基礎(chǔ)知識(shí),需要的朋友可以參考下
    2015-05-05
  • python實(shí)現(xiàn)圖片素描效果

    python實(shí)現(xiàn)圖片素描效果

    這篇文章主要介紹了python如何實(shí)現(xiàn)圖片素描效果,幫助大家利用python處理圖片,感興趣的朋友可以了解下
    2020-09-09

最新評(píng)論