PyTorch中torch.nn.Linear實(shí)例詳解
前言
在學(xué)習(xí)transformer時(shí),遇到過非常頻繁的nn.Linear()函數(shù),這里對(duì)nn.Linear進(jìn)行一個(gè)詳解。
參考:https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html
1. nn.Linear的原理:
從名稱就可以看出來,nn.Linear表示的是線性變換,原型就是初級(jí)數(shù)學(xué)里學(xué)到的線性函數(shù):y=kx+b
不過在深度學(xué)習(xí)中,變量都是多維張量,乘法就是矩陣乘法,加法就是矩陣加法,因此nn.Linear()運(yùn)行的真正的計(jì)算就是:
output = weight @ input + bias
@: 在python中代表矩陣乘法
input: 表示輸入的Tensor,可以有多個(gè)維度
weights: 表示可學(xué)習(xí)的權(quán)重,shape=(output_feature,in_feature)
bias: 表示科學(xué)習(xí)的偏置,shape=(output_feature)
in_feature: nn.Linear 初始化的第一個(gè)參數(shù),即輸入Tensor最后一維的通道數(shù)
out_feature: nn.Linear 初始化的第二個(gè)參數(shù),即返回Tensor最后一維的通道數(shù)
output: 表示輸入的Tensor,可以有多個(gè)維度
2. nn.Linear的使用:
常用頭文件:import torch.nn as nn
nn.Linear()的初始化:
nn.Linear(in_feature,out_feature,bias)
in_feature: int型, 在forward中輸入Tensor最后一維的通道數(shù)
out_feature: int型, 在forward中輸出Tensor最后一維的通道數(shù)
bias: bool型, Linear線性變換中是否添加bias偏置
nn.Linear()的執(zhí)行:(即執(zhí)行forward函數(shù))
out=nn.Linear(input)
input: 表示輸入的Tensor,可以有多個(gè)維度
output: 表示輸入的Tensor,可以有多個(gè)維度
舉例:
2維 Tensor
m = nn.Linear(20, 40) input = torch.randn(128, 20) output = m(input) print(output.size()) # [(128,40])
4維 Tensor:
m = nn.Linear(128, 64) input = torch.randn(512, 3,128,128) output = m(input) print(output.size()) # [(512, 3,128,64))
3. nn.Linear的源碼定義:
import math import torch import torch.nn as nn from torch import Tensor from torch.nn.parameter import Parameter, UninitializedParameter from torch.nn import functional as F from torch.nn import init # from .lazy import LazyModuleMixin class myLinear(nn.Module): r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b` This module supports :ref:`TensorFloat32<tf32_on_ampere>`. Args: in_features: size of each input sample out_features: size of each output sample bias: If set to ``False``, the layer will not learn an additive bias. Default: ``True`` Shape: - Input: :math:`(*, H_{in})` where :math:`*` means any number of dimensions including none and :math:`H_{in} = \text{in\_features}`. - Output: :math:`(*, H_{out})` where all but the last dimension are the same shape as the input and :math:`H_{out} = \text{out\_features}`. Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where :math:`k = \frac{1}{\text{in\_features}}` Examples:: >>> m = nn.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: Tensor def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(myLinear, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) if bias: self.bias = Parameter(torch.empty(out_features, **factory_kwargs)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) -> None: # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with # uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see # https://github.com/pytorch/pytorch/issues/57109 print("333") init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 init.uniform_(self.bias, -bound, bound) def forward(self, input: Tensor) -> Tensor: print("111") print("self.weight.shape=(", ) return F.linear(input, self.weight, self.bias) def extra_repr(self) -> str: print("www") return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None ) # m = myLinear(20, 40) # input = torch.randn(128, 40, 20) # output = m(input) # print(output.size()) m = myLinear(128, 64) input = torch.randn(512, 3,128,128) output = m(input) print(output.size()) # [(512, 3,128,64))
4. nn.Linear的官方源碼:
import math import torch from torch import Tensor from torch.nn.parameter import Parameter, UninitializedParameter from .. import functional as F from .. import init from .module import Module from .lazy import LazyModuleMixin class Identity(Module): r"""A placeholder identity operator that is argument-insensitive. Args: args: any argument (unused) kwargs: any keyword argument (unused) Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. Examples:: >>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 20]) """ def __init__(self, *args, **kwargs): super(Identity, self).__init__() def forward(self, input: Tensor) -> Tensor: return input class Linear(Module): r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b` This module supports :ref:`TensorFloat32<tf32_on_ampere>`. Args: in_features: size of each input sample out_features: size of each output sample bias: If set to ``False``, the layer will not learn an additive bias. Default: ``True`` Shape: - Input: :math:`(*, H_{in})` where :math:`*` means any number of dimensions including none and :math:`H_{in} = \text{in\_features}`. - Output: :math:`(*, H_{out})` where all but the last dimension are the same shape as the input and :math:`H_{out} = \text{out\_features}`. Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where :math:`k = \frac{1}{\text{in\_features}}` Examples:: >>> m = nn.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: Tensor def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) if bias: self.bias = Parameter(torch.empty(out_features, **factory_kwargs)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) -> None: # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with # uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see # https://github.com/pytorch/pytorch/issues/57109 init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 init.uniform_(self.bias, -bound, bound) def forward(self, input: Tensor) -> Tensor: return F.linear(input, self.weight, self.bias) def extra_repr(self) -> str: return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None ) # This class exists solely to avoid triggering an obscure error when scripting # an improperly quantized attention layer. See this issue for details: # https://github.com/pytorch/pytorch/issues/58969 # TODO: fail fast on quantization API usage error, then remove this class # and replace uses of it with plain Linear class NonDynamicallyQuantizableLinear(Linear): def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype) [docs]class Bilinear(Module): r"""Applies a bilinear transformation to the incoming data: :math:`y = x_1^T A x_2 + b` Args: in1_features: size of each first input sample in2_features: size of each second input sample out_features: size of each output sample bias: If set to False, the layer will not learn an additive bias. Default: ``True`` Shape: - Input1: :math:`(*, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` and :math:`*` means any number of additional dimensions including none. All but the last dimension of the inputs should be the same. - Input2: :math:`(*, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`. - Output: :math:`(*, H_{out})` where :math:`H_{out}=\text{out\_features}` and all but the last dimension are the same shape as the input. Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in1\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in1\_features}}` Examples:: >>> m = nn.Bilinear(20, 30, 40) >>> input1 = torch.randn(128, 20) >>> input2 = torch.randn(128, 30) >>> output = m(input1, input2) >>> print(output.size()) torch.Size([128, 40]) """ __constants__ = ['in1_features', 'in2_features', 'out_features'] in1_features: int in2_features: int out_features: int weight: Tensor def __init__(self, in1_features: int, in2_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(Bilinear, self).__init__() self.in1_features = in1_features self.in2_features = in2_features self.out_features = out_features self.weight = Parameter(torch.empty((out_features, in1_features, in2_features), **factory_kwargs)) if bias: self.bias = Parameter(torch.empty(out_features, **factory_kwargs)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) -> None: bound = 1 / math.sqrt(self.weight.size(1)) init.uniform_(self.weight, -bound, bound) if self.bias is not None: init.uniform_(self.bias, -bound, bound) def forward(self, input1: Tensor, input2: Tensor) -> Tensor: return F.bilinear(input1, input2, self.weight, self.bias) def extra_repr(self) -> str: return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format( self.in1_features, self.in2_features, self.out_features, self.bias is not None ) class LazyLinear(LazyModuleMixin, Linear): r"""A :class:`torch.nn.Linear` module where `in_features` is inferred. In this module, the `weight` and `bias` are of :class:`torch.nn.UninitializedParameter` class. They will be initialized after the first call to ``forward`` is done and the module will become a regular :class:`torch.nn.Linear` module. The ``in_features`` argument of the :class:`Linear` is inferred from the ``input.shape[-1]``. Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation on lazy modules and their limitations. Args: out_features: size of each output sample bias: If set to ``False``, the layer will not learn an additive bias. Default: ``True`` Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where :math:`k = \frac{1}{\text{in\_features}}` """ cls_to_become = Linear # type: ignore[assignment] weight: UninitializedParameter bias: UninitializedParameter # type: ignore[assignment] def __init__(self, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} # bias is hardcoded to False to avoid creating tensor # that will soon be overwritten. super().__init__(0, 0, False) self.weight = UninitializedParameter(**factory_kwargs) self.out_features = out_features if bias: self.bias = UninitializedParameter(**factory_kwargs) def reset_parameters(self) -> None: if not self.has_uninitialized_params() and self.in_features != 0: super().reset_parameters() def initialize_parameters(self, input) -> None: # type: ignore[override] if self.has_uninitialized_params(): with torch.no_grad(): self.in_features = input.shape[-1] self.weight.materialize((self.out_features, self.in_features)) if self.bias is not None: self.bias.materialize((self.out_features,)) self.reset_parameters() # TODO: PartialLinear - maybe in sparse?
補(bǔ)充:許多細(xì)節(jié)需要聲明
1)nn.Linear是一個(gè)類,使用時(shí)進(jìn)行類的實(shí)例化
2)實(shí)例化的時(shí)候,nn.Linear需要輸入兩個(gè)參數(shù),in_features為上一層神經(jīng)元的個(gè)數(shù),out_features為這一層的神經(jīng)元個(gè)數(shù)
3)不需要定義w和b。所有nn.Module的子類,形如nn.XXX的層,都會(huì)在實(shí)例化的同時(shí)隨機(jī)生成w和b的初始值。所以實(shí)例化之后,我們就可以調(diào)用屬性weight和bias來查看生成的w和b。其中w是必然會(huì)生成的,b是我們可以控制是否要生成的。在nn.Linear類中,有參數(shù)bias,默認(rèn) bias = True。如果我們希望不擬合常量b,在實(shí)例化時(shí)將參數(shù)bias設(shè)置為False即可。
4)由于w和b是隨機(jī)生成的,所以同樣的代碼多次運(yùn)行后的結(jié)果是不一致的。如果我們希望控制隨機(jī)性,則可以使用torch中的random類。如:torch.random.manual_seed(420) #人為設(shè)置隨機(jī)數(shù)種子
5)由于不需要定義常量b,因此在特征張量中,不需要留出與常數(shù)項(xiàng)相乘的那一列,只需要輸入特征張量。
6)輸入層只有一層,并且輸入層的結(jié)構(gòu)(神經(jīng)元的個(gè)數(shù))由輸入的特征張量X決定,因此在PyTorch中構(gòu)筑神經(jīng)網(wǎng)絡(luò)時(shí),不需要定義輸入層。
7)實(shí)例化之后,將特征張量輸入到實(shí)例化后的類中。
總結(jié)
到此這篇關(guān)于PyTorch中torch.nn.Linear實(shí)例詳解的文章就介紹到這了,更多相關(guān)PyTorch torch.nn.Linear詳解內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Tensorflow之MNIST CNN實(shí)現(xiàn)并保存、加載模型
這篇文章主要為大家詳細(xì)介紹了Tensorflow之MNIST CNN實(shí)現(xiàn)并保存、加載模型,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2020-06-06Python爬蟲之PhantomJS和handless的使用詳解
這篇文章主要介紹了Python爬蟲之PhantomJS和handless的使用詳解,PhantomJS是一個(gè)基于Webkit的headless瀏覽器,它會(huì)把網(wǎng)站加載到內(nèi)存并使用webkit來編譯解釋執(zhí)行頁面上的JavaScript代碼,由于不進(jìn)行css和gui渲染、不展示圖形界面,需要的朋友可以參考下2023-09-09如何使用Python對(duì)Excel表格進(jìn)行拼接合并
這篇文章主要介紹了Python處理EXCEL基礎(chǔ)操作篇3用Python對(duì)Excel表格進(jìn)行拼接合并,文中提供了解決思路和部分實(shí)現(xiàn)代碼,需要的朋友可以參考下2023-03-03Python使用os.listdir()和os.walk()獲取文件路徑與文件下所有目錄的方法
今天小編就為大家分享一篇關(guān)于Python使用os.listdir()和os.walk()獲取文件路徑與文件下所有目錄的方法,小編覺得內(nèi)容挺不錯(cuò)的,現(xiàn)在分享給大家,具有很好的參考價(jià)值,需要的朋友一起跟隨小編來看看吧2019-04-04python實(shí)現(xiàn)隨機(jī)調(diào)用一個(gè)瀏覽器打開網(wǎng)頁
下面小編就為大家分享一篇python實(shí)現(xiàn)隨機(jī)調(diào)用一個(gè)瀏覽器打開網(wǎng)頁,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-04-04Python中內(nèi)置的日志模塊logging用法詳解
Python的logging模塊提供了記錄程序運(yùn)行情況的日志功能,類似于Apache的log4j,很好很強(qiáng)大,這里我們就來看一下Python中內(nèi)置的日志模塊logging用法詳解2016-07-07講解Python中運(yùn)算符使用時(shí)的優(yōu)先級(jí)
這篇文章主要介紹了講解Python中運(yùn)算符使用時(shí)的優(yōu)先級(jí),是Python學(xué)習(xí)當(dāng)中的基礎(chǔ)知識(shí),需要的朋友可以參考下2015-05-05