PyTorch中torch.utils.data.Dataset的介紹與實(shí)戰(zhàn)
一、前言
訓(xùn)練模型一般都是先處理 數(shù)據(jù)的輸入問題 和 預(yù)處理問題 。Pytorch提供了幾個(gè)有用的工具:torch.utils.data.Dataset 類和 torch.utils.data.DataLoader 類 。
流程是先把原始數(shù)據(jù)轉(zhuǎn)變成 torch.utils.data.Dataset 類,隨后再把得到的 torch.utils.data.Dataset 類當(dāng)作一個(gè)參數(shù)傳遞給 torch.utils.data.DataLoader 類,得到一個(gè)數(shù)據(jù)加載器,這個(gè)數(shù)據(jù)加載器每次可以返回一個(gè) Batch 的數(shù)據(jù)供模型訓(xùn)練使用。
在 pytorch 中,提供了一種十分方便的數(shù)據(jù)讀取機(jī)制,即使用 torch.utils.data.Dataset 與 Dataloader 組合得到數(shù)據(jù)迭代器。在每次訓(xùn)練時(shí),利用這個(gè)迭代器輸出每一個(gè) batch 數(shù)據(jù),并能在輸出時(shí)對數(shù)據(jù)進(jìn)行相應(yīng)的預(yù)處理或數(shù)據(jù)增廣操作。
本文我們主要介紹對 torch.utils.data.Dataset 的理解,對 Dataloader 的介紹請參考我的另一篇文章:【PyTorch】torch.utils.data.DataLoader 簡單介紹與使用
在本文的最后將給出 torch.utils.data.Dataset 與 Dataloader 結(jié)合使用處理數(shù)據(jù)的實(shí)戰(zhàn)代碼。
二、torch.utils.data.Dataset 是什么
1. 干什么用的?
- pytorch 提供了一個(gè)數(shù)據(jù)讀取的方法,其由兩個(gè)類構(gòu)成:torch.utils.data.Dataset 和 DataLoader。
- 如果我們要自定義自己讀取數(shù)據(jù)的方法,就需要繼承類 torch.utils.data.Dataset ,并將其封裝到DataLoader 中。
- torch.utils.data.Dataset 是一個(gè) 類 Dataset 。通過重寫定義在該類上的方法,我們可以實(shí)現(xiàn)多種數(shù)據(jù)讀取及數(shù)據(jù)預(yù)處理方式。
2. 長什么樣子?
torch.utils.data.Dataset 的源碼:
class Dataset(object): """An abstract class representing a Dataset. All other datasets should subclass it. All subclasses should override ``__len__``, that provides the size of the dataset, and ``__getitem__``, supporting integer indexing in range from 0 to len(self) exclusive. """ def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def __add__(self, other): return ConcatDataset([self, other])
注釋翻譯:
表示一個(gè)數(shù)據(jù)集的抽象類。
所有其他數(shù)據(jù)集都應(yīng)該對其進(jìn)行子類化。 所有子類都應(yīng)該重寫提供數(shù)據(jù)集大小的 __len__ 和 __getitem__ ,支持從 0 到 len(self) 獨(dú)占的整數(shù)索引。
理解:
就是說,Dataset 是一個(gè) 數(shù)據(jù)集 抽象類,它是其他所有數(shù)據(jù)集類的父類(所有其他數(shù)據(jù)集類都應(yīng)該繼承它),繼承時(shí)需要重寫方法 __len__ 和 __getitem__ , __len__ 是提供數(shù)據(jù)集大小的方法, __getitem__ 是可以通過索引號找到數(shù)據(jù)的方法。
三、通過繼承 torch.utils.data.Dataset 定義自己的數(shù)據(jù)集類
torch.utils.data.Dataset 是代表自定義數(shù)據(jù)集的抽象類,我們可以定義自己的數(shù)據(jù)類抽象這個(gè)類,只需要重寫__len__和__getitem__這兩個(gè)方法就可以。
要自定義自己的 Dataset 類,至少要重載兩個(gè)方法:__len__, __getitem__
- __len__返回的是數(shù)據(jù)集的大小
- __getitem__實(shí)現(xiàn)索引數(shù)據(jù)集中的某一個(gè)數(shù)據(jù)
下面將簡單實(shí)現(xiàn)一個(gè)返回 torch.Tensor 類型的數(shù)據(jù)集:
from torch.utils.data import Dataset import torch class TensorDataset(Dataset): # TensorDataset繼承Dataset, 重載了__init__, __getitem__, __len__ # 實(shí)現(xiàn)將一組Tensor數(shù)據(jù)對封裝成Tensor數(shù)據(jù)集 # 能夠通過index得到數(shù)據(jù)集的數(shù)據(jù),能夠通過len,得到數(shù)據(jù)集大小 def __init__(self, data_tensor, target_tensor): self.data_tensor = data_tensor self.target_tensor = target_tensor def __getitem__(self, index): return self.data_tensor[index], self.target_tensor[index] def __len__(self): return self.data_tensor.size(0) # size(0) 返回當(dāng)前張量維數(shù)的第一維 # 生成數(shù)據(jù) data_tensor = torch.randn(4, 3) # 4 行 3 列,服從正態(tài)分布的張量 print(data_tensor) target_tensor = torch.rand(4) # 4 個(gè)元素,服從均勻分布的張量 print(target_tensor) # 將數(shù)據(jù)封裝成 Dataset (用 TensorDataset 類) tensor_dataset = TensorDataset(data_tensor, target_tensor) # 可使用索引調(diào)用數(shù)據(jù) print('tensor_data[0]: ', tensor_dataset[0]) # 可返回?cái)?shù)據(jù)len print('len os tensor_dataset: ', len(tensor_dataset))
輸出結(jié)果:
tensor([[ 0.8618, 0.4644, -0.5929],
[ 0.9566, -0.9067, 1.5781],
[ 0.3943, -0.7775, 2.0366],
[-1.2570, -0.3859, -0.3542]])
tensor([0.1363, 0.6545, 0.4345, 0.9928])
tensor_data[0]: (tensor([ 0.8618, 0.4644, -0.5929]), tensor(0.1363))
len os tensor_dataset: 4
四、為什么要定義自己的數(shù)據(jù)集類?
因?yàn)槲覀兛梢酝ㄟ^定義自己的數(shù)據(jù)集類并重寫該類上的方法 實(shí)現(xiàn)多種多樣的(自定義的)數(shù)據(jù)讀取方式。
比如,我們重寫 __init__ 實(shí)現(xiàn)用 pd.read_csv 讀取 csv 文件:
from torch.utils.data import Dataset import pandas as pd # 這個(gè)包用來讀取CSV數(shù)據(jù) # 繼承Dataset,定義自己的數(shù)據(jù)集類 mydataset class mydataset(Dataset): def __init__(self, csv_file): # self 參數(shù)必須,其他參數(shù)及其形式隨程序需要而不同,比如(self,*inputs) self.csv_data = pd.read_csv(csv_file) def __len__(self): return len(self.csv_data) def __getitem__(self, idx): data = self.csv_data.values[idx] return data data = mydataset('spambase.csv') print(data[3]) print(len(data))
輸出結(jié)果:
[0.000e+00 0.000e+00 0.000e+00 0.000e+00 6.300e-01 0.000e+00 3.100e-01
6.300e-01 3.100e-01 6.300e-01 3.100e-01 3.100e-01 3.100e-01 0.000e+00
0.000e+00 3.100e-01 0.000e+00 0.000e+00 3.180e+00 0.000e+00 3.100e-01
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
1.370e-01 0.000e+00 1.370e-01 0.000e+00 0.000e+00 3.537e+00 4.000e+01
1.910e+02 1.000e+00]
4601
要點(diǎn):
- 自己定義的 dataset 類需要繼承 Dataset。
- 需要實(shí)現(xiàn)必要的魔法方法:
在 __init__ 方法里面進(jìn)行 讀取數(shù)據(jù)文件 。
在 __getitem__ 方法里支持通過下標(biāo)訪問數(shù)據(jù)。
在 __len__ 方法里返回自定義數(shù)據(jù)集的大小,方便后期遍歷。
五、實(shí)戰(zhàn):torch.utils.data.Dataset + Dataloader 實(shí)現(xiàn)數(shù)據(jù)集讀取和迭代
實(shí)例 1
數(shù)據(jù)集 spambase.csv 用的是 UCI 機(jī)器學(xué)習(xí)存儲庫里的垃圾郵件數(shù)據(jù)集,它一條數(shù)據(jù)有57個(gè)特征和1個(gè)標(biāo)簽。
import torch.utils.data as Data import pandas as pd # 這個(gè)包用來讀取CSV數(shù)據(jù) import torch # 繼承Dataset,定義自己的數(shù)據(jù)集類 mydataset class mydataset(Data.Dataset): def __init__(self, csv_file): # self 參數(shù)必須,其他參數(shù)及其形式隨程序需要而不同,比如(self,*inputs) data_csv = pd.DataFrame(pd.read_csv(csv_file)) # 讀數(shù)據(jù) self.csv_data = data_csv.drop(axis=1, columns='58', inplace=False) # 刪除最后一列標(biāo)簽 def __len__(self): return len(self.csv_data) def __getitem__(self, idx): data = self.csv_data.values[idx] return data data = mydataset('spambase.csv') x = torch.tensor(data[:5]) # 前五個(gè)數(shù)據(jù) y = torch.tensor([1, 1, 1, 1, 1]) # 標(biāo)簽 torch_dataset = Data.TensorDataset(x, y) # 對給定的 tensor 數(shù)據(jù),將他們包裝成 dataset loader = Data.DataLoader( # 從數(shù)據(jù)庫中每次抽出batch size個(gè)樣本 dataset = torch_dataset, # torch TensorDataset format batch_size = 2, # mini batch size shuffle=True, # 要不要打亂數(shù)據(jù) (打亂比較好) num_workers=2, # 多線程來讀數(shù)據(jù) ) def show_batch(): for step, (batch_x, batch_y) in enumerate(loader): print("steop:{}, batch_x:{}, batch_y:{}".format(step, batch_x, batch_y)) show_batch()
輸出結(jié)果:
steop:0, batch_x:tensor([[0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 6.3000e-01, 0.0000e+00,
3.1000e-01, 6.3000e-01, 3.1000e-01, 6.3000e-01, 3.1000e-01, 3.1000e-01,
3.1000e-01, 0.0000e+00, 0.0000e+00, 3.1000e-01, 0.0000e+00, 0.0000e+00,
3.1800e+00, 0.0000e+00, 3.1000e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 1.3500e-01, 0.0000e+00, 1.3500e-01, 0.0000e+00, 0.0000e+00,
3.5370e+00, 4.0000e+01, 1.9100e+02],
[0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 6.3000e-01, 0.0000e+00,
3.1000e-01, 6.3000e-01, 3.1000e-01, 6.3000e-01, 3.1000e-01, 3.1000e-01,
3.1000e-01, 0.0000e+00, 0.0000e+00, 3.1000e-01, 0.0000e+00, 0.0000e+00,
3.1800e+00, 0.0000e+00, 3.1000e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 1.3700e-01, 0.0000e+00, 1.3700e-01, 0.0000e+00, 0.0000e+00,
3.5370e+00, 4.0000e+01, 1.9100e+02]], dtype=torch.float64), batch_y:tensor([1, 1])
steop:1, batch_x:tensor([[2.1000e-01, 2.8000e-01, 5.0000e-01, 0.0000e+00, 1.4000e-01, 2.8000e-01,
2.1000e-01, 7.0000e-02, 0.0000e+00, 9.4000e-01, 2.1000e-01, 7.9000e-01,
6.5000e-01, 2.1000e-01, 1.4000e-01, 1.4000e-01, 7.0000e-02, 2.8000e-01,
3.4700e+00, 0.0000e+00, 1.5900e+00, 0.0000e+00, 4.3000e-01, 4.3000e-01,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
7.0000e-02, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 1.3200e-01, 0.0000e+00, 3.7200e-01, 1.8000e-01, 4.8000e-02,
5.1140e+00, 1.0100e+02, 1.0280e+03],
[6.0000e-02, 0.0000e+00, 7.1000e-01, 0.0000e+00, 1.2300e+00, 1.9000e-01,
1.9000e-01, 1.2000e-01, 6.4000e-01, 2.5000e-01, 3.8000e-01, 4.5000e-01,
1.2000e-01, 0.0000e+00, 1.7500e+00, 6.0000e-02, 6.0000e-02, 1.0300e+00,
1.3600e+00, 3.2000e-01, 5.1000e-01, 0.0000e+00, 1.1600e+00, 6.0000e-02,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 6.0000e-02, 0.0000e+00, 0.0000e+00,
1.2000e-01, 0.0000e+00, 6.0000e-02, 6.0000e-02, 0.0000e+00, 0.0000e+00,
1.0000e-02, 1.4300e-01, 0.0000e+00, 2.7600e-01, 1.8400e-01, 1.0000e-02,
9.8210e+00, 4.8500e+02, 2.2590e+03]], dtype=torch.float64), batch_y:tensor([1, 1])
steop:2, batch_x:tensor([[ 0.0000, 0.6400, 0.6400, 0.0000, 0.3200, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.6400, 0.0000, 0.0000,
0.0000, 0.3200, 0.0000, 1.2900, 1.9300, 0.0000, 0.9600,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.7780, 0.0000, 0.0000, 3.7560, 61.0000,
278.0000]], dtype=torch.float64), batch_y:tensor([1])
一共 5 條數(shù)據(jù),batch_size 設(shè)為 2 ,則數(shù)據(jù)被分為三組,每組的數(shù)據(jù)量為:2,2,1。
實(shí)例 2:進(jìn)階
import torch.utils.data as Data import pandas as pd # 這個(gè)包用來讀取CSV數(shù)據(jù) import numpy as np # 繼承Dataset,定義自己的數(shù)據(jù)集類 mydataset class mydataset(Data.Dataset): def __init__(self, csv_file): # self 參數(shù)必須,其他參數(shù)及其形式隨程序需要而不同,比如(self,*inputs) # 讀取數(shù)據(jù) frame = pd.DataFrame(pd.read_csv('spambase.csv')) spam = frame[frame['58'] == 1] ham = frame[frame['58'] == 0] SpamNew = spam.drop(axis=1, columns='58', inplace=False) # 刪除第58列,inplace=False不改變原數(shù)據(jù),返回一個(gè)新dataframe HamNew = ham.drop(axis=1, columns='58', inplace=False) # 數(shù)據(jù) self.csv_data = np.vstack([np.array(SpamNew), np.array(HamNew)]) # 將兩個(gè)N維數(shù)組進(jìn)行連接,形成X # 標(biāo)簽 self.Label = np.array([1] * len(spam) + [0] * len(ham)) # 形成標(biāo)簽值列表y def __len__(self): return len(self.csv_data) def __getitem__(self, idx): data = self.csv_data[idx] label = self.Label[idx] return data, label data = mydataset('spambase.csv') print(len(data)) loader = Data.DataLoader( # 從數(shù)據(jù)庫中每次抽出batch size個(gè)樣本 dataset = data, # torch TensorDataset format batch_size = 460, # mini batch size shuffle=True, # 要不要打亂數(shù)據(jù) (打亂比較好) num_workers=2, # 多線程來讀數(shù)據(jù) ) def show_batch(): for step, (batch_x, batch_y) in enumerate(loader): print("steop:{}, batch_x:{}, batch_y:{}".format(step, batch_x, batch_y)) show_batch()
輸出結(jié)果:
4601
steop:0, batch_x:tensor([[0.0000e+00, 2.4600e+00, 0.0000e+00, ..., 2.1420e+00, 1.0000e+01,
7.5000e+01],
[0.0000e+00, 0.0000e+00, 1.6000e+00, ..., 2.0650e+00, 1.2000e+01,
9.5000e+01],
[0.0000e+00, 0.0000e+00, 3.6000e-01, ..., 3.7220e+00, 2.0000e+01,
2.6800e+02],
...,
[7.7000e-01, 3.8000e-01, 7.7000e-01, ..., 1.4619e+01, 5.2500e+02,
9.2100e+02],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.0000e+00, 1.0000e+00,
5.0000e+00],
[4.0000e-01, 1.8000e-01, 3.2000e-01, ..., 3.3050e+00, 1.8100e+02,
1.6130e+03]], dtype=torch.float64), batch_y:tensor([0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1,
0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0,
0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,
1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0,
1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1,
1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0,
0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1,
0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,
1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1,
0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1,
0, 1, 0, 1])
steop:1, batch_x:tensor([[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.0000e+00, 1.0000e+00,
2.0000e+00],
[4.9000e-01, 0.0000e+00, 7.4000e-01, ..., 3.9750e+00, 4.7000e+01,
4.8500e+02],
[0.0000e+00, 0.0000e+00, 7.1000e-01, ..., 4.0220e+00, 9.7000e+01,
5.4300e+02],
...,
[0.0000e+00, 1.4000e-01, 1.4000e-01, ..., 5.3310e+00, 8.0000e+01,
1.0290e+03],
[0.0000e+00, 0.0000e+00, 3.6000e-01, ..., 3.1760e+00, 5.1000e+01,
2.7000e+02],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.1660e+00, 2.0000e+00,
7.0000e+00]], dtype=torch.float64), batch_y:tensor([0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0,
0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0,
1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0,
1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0,
0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0,
0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0,
1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1,
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1,
1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1,
1, 0, 0, 0])
steop:2, batch_x:tensor([[0.0000e+00, 0.0000e+00, 1.4700e+00, ..., 3.0000e+00, 3.3000e+01,
1.7700e+02],
[2.6000e-01, 4.6000e-01, 9.9000e-01, ..., 1.3235e+01, 2.7200e+02,
1.5750e+03],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 2.0450e+00, 6.0000e+00,
4.5000e+01],
...,
[4.0000e-01, 0.0000e+00, 0.0000e+00, ..., 1.1940e+00, 5.0000e+00,
1.2900e+02],
[2.6000e-01, 0.0000e+00, 0.0000e+00, ..., 1.8370e+00, 1.1000e+01,
1.5800e+02],
[5.0000e-02, 0.0000e+00, 1.0000e-01, ..., 3.7150e+00, 1.0700e+02,
1.3860e+03]], dtype=torch.float64), batch_y:tensor([1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0,
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1,
0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0,
0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0,
1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1,
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0,
1, 1, 0, 0])
steop:3, batch_x:tensor([[2.6000e-01, 0.0000e+00, 5.3000e-01, ..., 2.6460e+00, 7.7000e+01,
1.7200e+02],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 2.4280e+00, 5.0000e+00,
1.7000e+01],
[3.4000e-01, 0.0000e+00, 1.7000e+00, ..., 6.6700e+02, 1.3330e+03,
1.3340e+03],
...,
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.0000e+00, 1.0000e+00,
7.0000e+00],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 2.7010e+00, 2.0000e+01,
1.8100e+02],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 4.0000e+00, 1.1000e+01,
3.6000e+01]], dtype=torch.float64), batch_y:tensor([0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1,
0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0,
0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0,
0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1,
0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0,
0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1,
0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1,
1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0,
1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0,
1, 0, 0, 1])
steop:4, batch_x:tensor([[ 0.0000, 0.0000, 0.3100, ..., 5.7080, 138.0000, 274.0000],
[ 0.0000, 0.0000, 0.3400, ..., 2.2570, 17.0000, 158.0000],
[ 1.0400, 0.0000, 0.0000, ..., 1.0000, 1.0000, 17.0000],
...,
[ 0.0000, 0.0000, 0.0000, ..., 4.0000, 12.0000, 28.0000],
[ 0.3300, 0.0000, 0.0000, ..., 1.7880, 6.0000, 93.0000],
[ 0.0000, 14.2800, 0.0000, ..., 1.8000, 5.0000, 9.0000]],
dtype=torch.float64), batch_y:tensor([1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1,
0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,
0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,
1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1,
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0,
1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0,
0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0,
1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1,
0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1,
1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0,
1, 1, 0, 0])
steop:5, batch_x:tensor([[7.0000e-01, 0.0000e+00, 1.0500e+00, ..., 1.1660e+00, 1.3000e+01,
1.8900e+02],
[0.0000e+00, 3.3600e+00, 1.9200e+00, ..., 6.1370e+00, 1.0700e+02,
1.7800e+02],
[5.4000e-01, 0.0000e+00, 1.0800e+00, ..., 5.4540e+00, 6.8000e+01,
1.8000e+02],
...,
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 3.8330e+00, 9.0000e+00,
2.3000e+01],
[6.0000e-02, 6.5000e-01, 7.1000e-01, ..., 4.7420e+00, 1.1700e+02,
1.3420e+03],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 2.6110e+00, 1.2000e+01,
4.7000e+01]], dtype=torch.float64), batch_y:tensor([1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1,
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0,
0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1,
0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1,
0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0,
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1,
1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1,
0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1,
1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1,
0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0,
0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1,
0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0,
0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 1, 1, 1])
steop:6, batch_x:tensor([[0.0000e+00, 1.4280e+01, 0.0000e+00, ..., 1.8000e+00, 5.0000e+00,
9.0000e+00],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.9280e+00, 1.5000e+01,
5.4000e+01],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.0692e+01, 6.5000e+01,
1.3900e+02],
...,
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.5000e+00, 5.0000e+00,
2.4000e+01],
[7.6000e-01, 1.9000e-01, 3.8000e-01, ..., 3.7020e+00, 4.5000e+01,
1.0700e+03],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 2.0000e+00, 1.2000e+01,
8.8000e+01]], dtype=torch.float64), batch_y:tensor([0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,
0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1,
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0,
0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0,
0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1,
0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0,
0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1,
1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 0])
steop:7, batch_x:tensor([[0.0000e+00, 2.7000e-01, 0.0000e+00, ..., 5.8020e+00, 4.3000e+01,
4.1200e+02],
[0.0000e+00, 3.5000e-01, 7.0000e-01, ..., 3.6390e+00, 6.1000e+01,
3.1300e+02],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.5920e+00, 7.0000e+00,
1.2900e+02],
...,
[8.0000e-02, 1.6000e-01, 8.0000e-02, ..., 2.7470e+00, 8.6000e+01,
1.9950e+03],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.6130e+00, 1.1000e+01,
7.1000e+01],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.9110e+00, 1.5000e+01,
6.5000e+01]], dtype=torch.float64), batch_y:tensor([0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1,
0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0,
1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0,
0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0,
1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,
0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1,
1, 0, 0, 0])
steop:8, batch_x:tensor([[1.7000e-01, 0.0000e+00, 1.7000e-01, ..., 1.7960e+00, 1.2000e+01,
4.5800e+02],
[3.7000e-01, 0.0000e+00, 6.3000e-01, ..., 1.1810e+00, 4.0000e+00,
1.0400e+02],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.0000e+00, 1.0000e+00,
7.0000e+00],
...,
[2.3000e-01, 0.0000e+00, 4.7000e-01, ..., 2.4200e+00, 1.2000e+01,
3.3400e+02],
[0.0000e+00, 0.0000e+00, 1.2900e+00, ..., 1.3500e+00, 4.0000e+00,
2.7000e+01],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.3730e+00, 1.1000e+01,
1.6900e+02]], dtype=torch.float64), batch_y:tensor([1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1,
0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0,
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0,
0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0,
0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1,
0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1,
0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0,
1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0,
1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,
0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1,
0, 0, 0, 0])
steop:9, batch_x:tensor([[0.0000e+00, 6.3000e-01, 0.0000e+00, ..., 2.2150e+00, 2.2000e+01,
1.1300e+02],
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.0000e+00, 1.0000e+00,
5.0000e+00],
[0.0000e+00, 0.0000e+00, 2.0000e-01, ..., 1.1870e+00, 1.1000e+01,
1.1400e+02],
...,
[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 2.3070e+00, 1.6000e+01,
3.0000e+01],
[5.1000e-01, 4.3000e-01, 2.9000e-01, ..., 6.5900e+00, 7.3900e+02,
2.3330e+03],
[6.8000e-01, 6.8000e-01, 6.8000e-01, ..., 2.4720e+00, 9.0000e+00,
8.9000e+01]], dtype=torch.float64), batch_y:tensor([0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0,
0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,
1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0,
0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,
0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1,
0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0,
1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,
1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1])
steop:10, batch_x:tensor([[0.0000e+00, 2.5000e-01, 7.5000e-01, 0.0000e+00, 1.0000e+00, 2.5000e-01,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 2.5000e-01, 2.5000e-01,
1.2500e+00, 0.0000e+00, 0.0000e+00, 2.5000e-01, 0.0000e+00, 1.2500e+00,
2.5100e+00, 0.0000e+00, 1.7500e+00, 0.0000e+00, 2.5000e-01, 0.0000e+00,
0.0000e+00, 0.0000e+00, 2.5000e-01, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00, 0.0000e+00, 0.0000e+00, 4.2000e-02, 0.0000e+00, 0.0000e+00,
1.2040e+00, 7.0000e+00, 1.1800e+02]], dtype=torch.float64), batch_y:tensor([0])
一共 4601 條數(shù)據(jù),按 batch_size = 460 來分:能劃分為 11 組,前 10 組的數(shù)據(jù)量為 460,最后一組的數(shù)據(jù)量為 1 。
參考鏈接
- torch.Tensor.size()方法的使用舉例
- Pytorch筆記05-自定義數(shù)據(jù)讀取方式orch.utils.data.Dataset與Dataloader
- pytorch 可訓(xùn)練數(shù)據(jù)集創(chuàng)建(torch.utils.data)
- Pytorch的第一步:(1) Dataset類的使用
- pytorch中的torch.utils.data.Dataset和torch.utils.data.DataLoader
總結(jié)
————————————————
版權(quán)聲明:本文為CSDN博主「想變厲害的大白菜」的原創(chuàng)文章,遵循CC 4.0 BY-SA版權(quán)協(xié)議,轉(zhuǎn)載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/weixin_44211968/article/details/123744513
到此這篇關(guān)于PyTorch中torch.utils.data.Dataset的介紹與實(shí)戰(zhàn)的文章就介紹到這了,更多相關(guān)PyTorch torch.utils.data.Dataset內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python實(shí)現(xiàn)給數(shù)組按片賦值的方法
這篇文章主要介紹了python實(shí)現(xiàn)給數(shù)組按片賦值的方法,實(shí)例分析了Python在指定位置進(jìn)行賦值的相關(guān)技巧,需要的朋友可以參考下2015-07-07python實(shí)現(xiàn)學(xué)員管理系統(tǒng)
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)學(xué)員管理系統(tǒng),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2019-02-02cv2.imread?和?cv2.imdecode?用法及區(qū)別
對于路徑中含有中文的圖像,直接用cv2.imread讀取會報(bào)錯(cuò),上次看到有大佬使用cv2.imdecode就可以正常讀取,有點(diǎn)好奇,所以今天來記錄下二者用法和區(qū)別,感興趣的朋友跟隨小編一起看看吧2023-02-02Python Counting Bloom Filter原理與實(shí)現(xiàn)詳細(xì)介紹
這篇文章主要介紹了Python Counting Bloom Filter原理與實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)吧2022-10-10