yolov5中anchors設置實例詳解
yolov5中增加了自適應錨定框(Auto Learning Bounding Box Anchors),而其他yolo系列是沒有的。
一、默認錨定框
Yolov5 中默認保存了一些針對 coco數(shù)據集的預設錨定框,在 yolov5 的配置文件*.yaml 中已經預設了640×640圖像大小下錨定框的尺寸(以 yolov5s.yaml 為例):
# anchors anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32
anchors參數(shù)共有三行,每行9個數(shù)值;且每一行代表應用不同的特征圖;
1、第一行是在最大的特征圖上的錨框
2、第二行是在中間的特征圖上的錨框
3、第三行是在最小的特征圖上的錨框;
在目標檢測任務中,一般希望在大的特征圖上去檢測小目標,因為大特征圖才含有更多小目標信息,因此大特征圖上的anchor數(shù)值通常設置為小數(shù)值,而小特征圖上數(shù)值設置為大數(shù)值檢測大的目標。
二、自定義錨定框
1、訓練時自動計算錨定框
yolov5 中不是只使用默認錨定框,在開始訓練之前會對數(shù)據集中標注信息進行核查,計算此數(shù)據集標注信息針對默認錨定框的最佳召回率,當最佳召回率大于或等于0.98,則不需要更新錨定框;如果最佳召回率小于0.98,則需要重新計算符合此數(shù)據集的錨定框。
核查錨定框是否適合要求的函數(shù)在 /utils/autoanchor.py 文件中:
def check_anchors(dataset, model, thr=4.0, imgsz=640):
其中 thr 是指 數(shù)據集中標注框寬高比最大閾值,默認是使用 超參文件 hyp.scratch.yaml 中的 “anchor_t” 參數(shù)值。
核查主要代碼如下:
def metric(k): # compute metric r = wh[:, None] / k[None] x = torch.min(r, 1. / r).min(2)[0] # ratio metric best = x.max(1)[0] # best_x aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold bpr = (best > 1. / thr).float().mean() # best possible recall return bpr, aat bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
其中兩個指標需要解釋一下(bpr 和 aat):
bpr(best possible recall)
aat(anchors above threshold)
其中 bpr 參數(shù)就是判斷是否需要重新計算錨定框的依據(是否小于 0.98)。
重新計算符合此數(shù)據集標注框的錨定框,是利用 kmean聚類方法實現(xiàn)的,代碼在 /utils/autoanchor.py 文件中:
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): """ Creates kmeans-evolved anchors from training dataset Arguments: path: path to dataset *.yaml, or a loaded dataset n: number of anchors img_size: image size used for training thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 gen: generations to evolve anchors using genetic algorithm verbose: print all results Return: k: kmeans evolved anchors Usage: from utils.autoanchor import *; _ = kmean_anchors() """ thr = 1. / thr prefix = colorstr('autoanchor: ') def metric(k, wh): # compute metrics r = wh[:, None] / k[None] x = torch.min(r, 1. / r).min(2)[0] # ratio metric # x = wh_iou(wh, torch.tensor(k)) # iou metric return x, x.max(1)[0] # x, best_x def anchor_fitness(k): # mutation fitness _, best = metric(torch.tensor(k, dtype=torch.float32), wh) return (best * (best > thr).float()).mean() # fitness def print_results(k): k = k[np.argsort(k.prod(1))] # sort small to large x, best = metric(k, wh0) bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr') print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' f'past_thr={x[x > thr].mean():.3f}-mean: ', end='') for i, x in enumerate(k): print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg return k if isinstance(path, str): # *.yaml file with open(path) as f: data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict from utils.datasets import LoadImagesAndLabels dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) else: dataset = path # dataset # Get label wh shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh # Filter i = (wh0 < 3.0).any(1).sum() if i: print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.') wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 # Kmeans calculation print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...') s = wh.std(0) # sigmas for whitening k, dist = kmeans(wh / s, n, iter=30) # points, mean distance k *= s wh = torch.tensor(wh, dtype=torch.float32) # filtered wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered k = print_results(k) # Plot # k, d = [None] * 20, [None] * 20 # for i in tqdm(range(1, 21)): # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) # ax = ax.ravel() # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh # ax[0].hist(wh[wh[:, 0]<100, 0],400) # ax[1].hist(wh[wh[:, 1]<100, 1],400) # fig.savefig('wh.png', dpi=200) # Evolve npr = np.random f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar for _ in pbar: v = np.ones(sh) while (v == 1).all(): # mutate until a change occurs (prevent duplicates) v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) kg = (k.copy() * v).clip(min=2.0) fg = anchor_fitness(kg) if fg > f: f, k = fg, kg.copy() pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' if verbose: print_results(k) return print_results(k)
對 kmean_anchors()函數(shù)中的參數(shù)做一下簡單解釋(代碼中已經有了英文注釋):
- path:包含數(shù)據集文件路徑等相關信息的 yaml 文件(比如 coco128.yaml), 或者 數(shù)據集張量(yolov5 自動計算錨定框時就是用的這種方式,先把數(shù)據集標簽信息讀取再處理)
- n:錨定框的數(shù)量,即有幾組;默認值是9
- img_size:圖像尺寸。計算數(shù)據集樣本標簽框的寬高比時,是需要縮放到 img_size 大小后再計算的;默認值是640
- thr:數(shù)據集中標注框寬高比最大閾值,默認是使用 超參文件 hyp.scratch.yaml 中的 “anchor_t” 參數(shù)值;默認值是4.0;自動計算時,會自動根據你所使用的數(shù)據集,來計算合適的閾值。
- gen:kmean聚類算法迭代次數(shù),默認值是1000
- verbose:是否打印輸出所有計算結果,默認值是true
如果你不想自動計算錨定框,可以在 train.py 中設置參數(shù)即可:
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
2、訓練前手動計算錨定框
如果使用 yolov5 訓練效果并不好(排除其他原因,只考慮 “預設錨定框” 這個因素), yolov5在核查默認錨定框是否符合要求時,計算的最佳召回率大于0.98,沒有自動計算錨定框;此時你可以自己手動計算錨定框。【即使自己的數(shù)據集中目標寬高比最大值小于4,默認錨定框也不一定是最合適的】
首先可以自行編寫一個程序,統(tǒng)計一下你所訓練的數(shù)據集所有標簽框寬高比,看下寬高比主要分布在哪個范圍、最大寬高比是多少? 比如:你使用的數(shù)據集中目標寬高比最大達到了 5:1(甚至 10:1) ,那肯定需要重新計算錨定框了,針對coco數(shù)據集的最大寬高比是 4:1 。
然后在 yolov5 程序中創(chuàng)建一個新的 python 文件 test.py,手動計算錨定框:
import utils.autoanchor as autoAC # 對數(shù)據集重新計算 anchors new_anchors = autoAC.kmean_anchors('./data/mydata.yaml', 9, 640, 5.0, 1000, True) print(new_anchors)
輸入信息如下(只截取了部分):
autoanchor: Evolving anchors with Genetic Algorithm: fitness = 0.6604: 87%|████████▋ | 866/1000 [00:00<00:00, 2124.00it/s]autoanchor: thr=0.25: 0.9839 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.662-mean/best, past_thr=0.476-mean: 15,20, 38,25, 55,65, 131,87, 97,174, 139,291, 256,242, 368,382, 565,422
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, 39,26, 54,64, 127,87, 97,176, 142,286, 257,245, 374,379, 582,424
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, 39,26, 54,63, 126,86, 97,176, 143,285, 258,241, 369,381, 583,424
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, 39,26, 54,63, 127,86, 97,176, 143,285, 258,241, 369,380, 583,424
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, 39,26, 53,63, 127,86, 97,175, 143,284, 257,243, 369,381, 582,422
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, 40,26, 53,62, 129,85, 96,175, 143,287, 256,240, 370,378, 582,419
autoanchor: Evolving anchors with Genetic Algorithm: fitness = 0.6605: 100%|██████████| 1000/1000 [00:00<00:00, 2170.29it/s]
Scanning '..\coco128\labels\train2017.cache' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100%|██████████| 128/128 [00:00<?, ?it/s]
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, 40,26, 53,62, 129,85, 96,175, 143,287, 256,240, 370,378, 582,419
[[ 14.931 20.439]
[ 39.648 25.53]
[ 53.371 62.35]
[ 129.07 84.774]
[ 95.719 175.08]
[ 142.69 286.95]
[ 256.46 239.83]
[ 369.9 378.3]
[ 581.87 418.56]]
Process finished with exit code 0
輸出的 9 組新的錨定框即是根據自己的數(shù)據集來計算的,可以按照順序替換到你所使用的配置文件*.yaml中(比如 yolov5s.yaml)。就可以重新訓練了。
參考的博文(表示感謝?。?/h2>
https://github.com/ultralytics/yolov5
https://blog.csdn.net/flyfish1986/article/details/117594265
https://zhuanlan.zhihu.com/p/183838757
https://blog.csdn.net/aabbcccddd01/article/details/109578614
總結
到此這篇關于yolov5中anchors設置詳解的文章就介紹到這了,更多相關yolov5 anchors設置內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
相關文章
使用Python內置模塊與函數(shù)進行不同進制的數(shù)的轉換
這篇文章主要介紹了使用Python內置模塊與函數(shù)進行不同進制的數(shù)的轉換,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-04-04