pyecharts繪制各種數(shù)據(jù)可視化圖表案例附效果+代碼
1、pyecharts繪制餅圖(顯示百分比)
# 導(dǎo)入模塊 from pyecharts import options as opts from pyecharts.charts import Pie #準(zhǔn)備數(shù)據(jù) label=['Mac口紅','Tom Ford口紅','圣羅蘭','紀(jì)梵希','花西子','迪奧','阿瑪尼','香奈兒'] values = [300,300,300,300,44,300,300,300] # 自定義函數(shù) def pie_base(): c = ( Pie() .add("",[list(z) for z in zip(label,values)]) .set_global_opts(title_opts = opts.TitleOpts(title="口紅品牌分析")) .set_series_opts(label_opts=opts.LabelOpts(formatter=":{c} vvxyksv9kd%")) # 值得一提的是,vvxyksv9kd%為百分比 ) return c # 調(diào)用自定義函數(shù)生成render.html pie_base().render()
2、pyecharts繪制柱狀圖
#導(dǎo)入模塊 from pyecharts.globals import ThemeType from pyecharts import options as opts from pyecharts.charts import Bar #準(zhǔn)備數(shù)據(jù) l1=['星期一','星期二','星期三','星期四','星期五','星期七','星期日'] l2=[100,200,300,400,500,400,300] bar = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add_xaxis(l1) .add_yaxis("柱狀圖標(biāo)簽", l2) .set_global_opts(title_opts=opts.TitleOpts(title="柱狀圖-基本示例", subtitle="副標(biāo)題")) ) # 生成render.html bar.render()
3、pyecharts繪制折線圖
#導(dǎo)入模塊 import pyecharts.options as opts from pyecharts.charts import Line #準(zhǔn)備數(shù)據(jù) x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日'] y1=[100,200,300,400,100,400,300] y2=[200,300,200,100,200,300,400] line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1線",y_axis=y1,symbol="arrow",is_symbol_show=True) .add_yaxis(series_name="y2線",y_axis=y2) .set_global_opts(title_opts=opts.TitleOpts(title="Line-雙折線圖")) ) #生成render.html line.render()
4、pyecharts繪制柱形折線組合圖
from pyecharts import options as opts from pyecharts.charts import Bar, Grid, Line #x軸的值為列表,包含每個(gè)月份 x_data = ["{}月".format(i) for i in range(1, 13)] bar = ( Bar() .add_xaxis(x_data) #第一個(gè)y軸的值、標(biāo)簽、顏色 .add_yaxis( "降雨量", [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 68.6, 22.0, 6.6, 4.3], yaxis_index=0, color="#5793f3", ) # #第二個(gè)y軸的值、標(biāo)簽、顏色 # .add_yaxis( # "蒸發(fā)量", # [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3], # yaxis_index=1, # color="#5793f3", # ) #右縱坐標(biāo) .extend_axis( yaxis=opts.AxisOpts( name="降雨量", type_="value", min_=0, max_=250, position="right", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ) ) #左縱坐標(biāo) .extend_axis( yaxis=opts.AxisOpts( type_="value", name="溫度", min_=0, max_=25, position="left", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axislabel_opts=opts.LabelOpts(formatter="{value} °C"), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ) ) .set_global_opts( yaxis_opts=opts.AxisOpts( name="降雨量", min_=0, max_=250, position="right", offset=0, axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#5793f3") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ), title_opts=opts.TitleOpts(title="Grid-多 Y 軸示例"), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), ) ) line = ( Line() .add_xaxis(x_data) .add_yaxis( "平均溫度", [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2], yaxis_index=2, color="#675bba", label_opts=opts.LabelOpts(is_show=False), ) ) bar.overlap(line) grid = Grid() grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True) grid.render()
5、pyecharts繪制散點(diǎn)圖
# 導(dǎo)入模塊 from pyecharts import options as opts from pyecharts.charts import Scatter # 設(shè)置銷(xiāo)售數(shù)據(jù) week = ["周一","周二","周三","周四","周五","周六","周日"] c =Scatter() # 散點(diǎn)圖繪制 c.add_xaxis(week) c.add_yaxis("商家A",[80,65,46,37,57,68,90]) c.set_global_opts(title_opts=opts.TitleOpts(title="一周的銷(xiāo)售額(萬(wàn)元)")) # 設(shè)置圖表標(biāo)題 c.render()
6、pyecharts繪制玫瑰圖
from pyecharts import options as opts from pyecharts.charts import Pie label=['Mac口紅','Tom Ford口紅','圣羅蘭','紀(jì)梵希','花西子'] values = [100,200,250,350,400] c = ( Pie() .add( "", [list(z) for z in zip(label,values)], radius=["30%", "75%"], center=["50%", "50%"], rosetype="radius", label_opts=opts.LabelOpts(is_show=False), ) .set_global_opts(title_opts=opts.TitleOpts(title="標(biāo)題")) .set_series_opts(label_opts=opts.LabelOpts(formatter=":{c} vvxyksv9kd%")) # 值得一提的是,vvxyksv9kd%為百分比 .render("玫瑰圖.html") )
7、pyecharts繪制詞云圖
# 導(dǎo)入WordCloud及配置模塊 from pyecharts import options as opts from pyecharts.charts import WordCloud from pyecharts.globals import SymbolType # 添加詞頻數(shù)據(jù) words = [ ("Sam S Club", 10000), ("Macys", 6181), ("Amy Schumer", 4386), ("Jurassic World", 4055), ("Charter Communications", 2467), ("Chick Fil A", 2244), ("Planet Fitness", 1868), ("Pitch Perfect", 1484), ("Express", 1112), ("Home", 865), ("Johnny Depp", 847), ("Lena Dunham", 582), ("Lewis Hamilton", 555), ("KXAN", 550), ("Mary Ellen Mark", 462), ("Farrah Abraham", 366), ("Rita Ora", 360), ("Serena Williams", 282), ("NCAA baseball tournament", 273), ("Point Break", 265), ] # WordCloud模塊,鏈?zhǔn)秸{(diào)用配置,最終生成html文件 c = ( WordCloud() .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="詞云圖")) .render("wordcloud_diamond.html") )
8、pyecharts繪制雷達(dá)圖
from pyecharts import options as opts from pyecharts.charts import Radar v1 = [[8.5,50000,15000,8000,13000,5000]] v2 = [[8.1,42000,13000,7000,15000,7000]] def radar_base() ->Radar: c = ( Radar() .add_schema( schema=[ opts.RadarIndicatorItem(name='KDA',max_=10), opts.RadarIndicatorItem(name='輸出', max_=60000), opts.RadarIndicatorItem(name='經(jīng)濟(jì)', max_=20000), opts.RadarIndicatorItem(name='生存', max_=10000), opts.RadarIndicatorItem(name='推進(jìn)', max_=20000), opts.RadarIndicatorItem(name='刷野', max_=10000), ] ) .add( '射手',v1, color='blue', #通過(guò)顏色屬性 將其填充 areastyle_opts=opts.AreaStyleOpts( opacity=0.5, color='blue' ), ) .add( '法師',v2, color='red', areastyle_opts=opts.AreaStyleOpts( opacity=0.5, color='red' ), ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts(title_opts=opts.TitleOpts(title='英雄成長(zhǎng)屬性對(duì)比')) ) return c radar_base().render("雷達(dá)圖.html")
9、pyecharts繪制散點(diǎn)圖
from pyecharts import options as opts from pyecharts.charts import Scatter from pyecharts.commons.utils import JsCode from pyecharts.faker import Faker c = ( Scatter() .add_xaxis(Faker.choose()) .add_yaxis( "商家A", [list(z) for z in zip(Faker.values(), Faker.choose())], label_opts=opts.LabelOpts( formatter=JsCode( "function(params){return params.value[1] +' : '+ params.value[2];}" ) ), ) .set_global_opts( title_opts=opts.TitleOpts(title="Scatter散點(diǎn)圖-多維度數(shù)據(jù)"), tooltip_opts=opts.TooltipOpts( formatter=JsCode( "function (params) {return params.name + ' : ' + params.value[2];}" ) ), visualmap_opts=opts.VisualMapOpts( type_="color", max_=150, min_=20, dimension=1 ), ) .render("散點(diǎn)圖.html") )
10、pyecharts繪制嵌套餅圖
import pyecharts.options as opts from pyecharts.charts import Pie from pyecharts.globals import ThemeType list1 = [300,55,400,110] attr1 = ["學(xué)習(xí)", "運(yùn)動(dòng)","休息", "娛樂(lè)"] list2 = [40,160,45,35,80,400,35,60] attr2 = ["閱讀", "上課", "運(yùn)動(dòng)", "討論", "編程", "睡覺(jué)","聽(tīng)音樂(lè)", "玩手機(jī)"] inner_data_pair = [list(z) for z in zip(attr1, list1)] outer_data_pair = [list(z) for z in zip(attr2, list2)] ( Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add( series_name="時(shí)長(zhǎng)占比", data_pair=inner_data_pair, radius=[0, "30%"], label_opts=opts.LabelOpts(position="inner"), ) .add( series_name="時(shí)長(zhǎng)占比", radius=["40%", "55%"], data_pair=outer_data_pair, label_opts=opts.LabelOpts( position="outside", formatter="{a|{a}}{abg|}\n{hr|}\n {b|: }{c} {per|vvxyksv9kd%} ", background_color="#eee", border_color="#aaa", border_width=1, border_radius=4, rich={ "a": {"color": "#999", "lineHeight": 22, "align": "center"}, "abg": { "backgroundColor": "#e3e3e3", "width": "100%", "align": "right", "height": 22, "borderRadius": [4, 4, 0, 0], }, "hr": { "borderColor": "#aaa", "width": "100%", "borderWidth": 0.5, "height": 0, }, "b": {"fontSize": 16, "lineHeight": 33}, "per": { "color": "#eee", "backgroundColor": "#334455", "padding": [2, 4], "borderRadius": 2, }, }, ), ) .set_global_opts(legend_opts=opts.LegendOpts(pos_left="left", orient="vertical")) .set_series_opts( tooltip_opts=opts.TooltipOpts( trigger="item", formatter="{a} <br/>: {c} (vvxyksv9kd%)" ) ) .render("嵌套餅圖.html") )
11、pyecharts繪制中國(guó)地圖
#導(dǎo)入模塊 from pyecharts import options as opts from pyecharts.charts import Map import random # 設(shè)置商家A所存在的相關(guān)省份,并設(shè)置初始數(shù)量為0 ultraman = [ ['四川', 0], ['臺(tái)灣', 0], ['新疆', 0], ['江西', 0], ['河南', 0], ['遼寧', 0], ['青海', 0], ['福建', 0], ['西藏', 0] ] # 設(shè)置商家B存在的相關(guān)省份,并設(shè)置初始數(shù)量為0 monster = [ ['廣東', 0], ['北京', 0], ['上海', 0], ['臺(tái)灣', 0], ['湖南', 0], ['浙江', 0], ['甘肅', 0], ['黑龍江', 0], ['江蘇', 0] ] def data_filling(array): ''' 作用:給數(shù)組數(shù)據(jù)填充隨機(jī)數(shù) ''' for i in array: # 隨機(jī)生成1到1000的隨機(jī)數(shù) i[1] = random.randint(1,1000) data_filling(ultraman) data_filling(monster) def create_china_map(): ( Map() .add( series_name="商家A", data_pair=ultraman, maptype="china", # 是否默認(rèn)選中,默認(rèn)為T(mén)rue is_selected=True, # 是否啟用鼠標(biāo)滾輪縮放和拖動(dòng)平移,默認(rèn)為T(mén)rue is_roam=True, # 是否顯示圖形標(biāo)記,默認(rèn)為T(mén)rue is_map_symbol_show=False, # 圖元樣式配置 itemstyle_opts={ # 常規(guī)顯示 "normal": {"areaColor": "white", "borderColor": "red"}, # 強(qiáng)調(diào)顏色 "emphasis": {"areaColor": "pink"} } ) .add( series_name="商家B", data_pair=monster, maptype="china", ) # 全局配置項(xiàng) .set_global_opts( # 設(shè)置標(biāo)題 title_opts=opts.TitleOpts(title="中國(guó)地圖"), # 設(shè)置標(biāo)準(zhǔn)顯示 visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False) ) # 系列配置項(xiàng) .set_series_opts( # 標(biāo)簽名稱顯示,默認(rèn)為T(mén)rue label_opts=opts.LabelOpts(is_show=True, color="blue") ) # 生成本地html文件 .render("中國(guó)地圖.html") ) #調(diào)用自定義函數(shù) create_china_map()
12、pyecharts繪制世界地圖
from pyecharts import options as opts from pyecharts.charts import Map import random # 設(shè)置商家A所存在的相關(guān)國(guó)家,并設(shè)置初始數(shù)量為0 ultraman = [ ['Russia', 0], ['China', 0], ['United States', 0], ['Australia', 0] ] # 設(shè)置商家B存在的相關(guān)國(guó)家,并設(shè)置初始數(shù)量為0 monster = [ ['India', 0], ['Canada', 0], ['France', 0], ['Brazil', 0] ] def data_filling(array): for i in array: # 隨機(jī)生成1到1000的隨機(jī)數(shù) i[1] = random.randint(1,1000) print(i) data_filling(ultraman) data_filling(monster) def create_world_map(): ''' 作用:生成世界地圖 ''' ( # 大小設(shè)置 Map() .add( series_name="商家A", data_pair=ultraman, maptype="world", ) .add( series_name="商家B", data_pair=monster, maptype="world", ) # 全局配置項(xiàng) .set_global_opts( # 設(shè)置標(biāo)題 title_opts=opts.TitleOpts(title="世界地圖"), # 設(shè)置標(biāo)準(zhǔn)顯示 visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False), ) # 系列配置項(xiàng) .set_series_opts( # 標(biāo)簽名稱顯示,默認(rèn)為T(mén)rue label_opts=opts.LabelOpts(is_show=False, color="blue") ) # 生成本地html文件 .render("世界地圖.html") ) create_world_map()
到此這篇關(guān)于pyecharts繪制各種數(shù)據(jù)可視化圖表案例附效果+代碼的文章就介紹到這了,更多相關(guān)pyecharts可視化圖表內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python 調(diào)用HBase的簡(jiǎn)單實(shí)例
下面小編就為大家?guī)?lái)一篇python 調(diào)用HBase的簡(jiǎn)單實(shí)例。小編覺(jué)得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧2016-12-12django注冊(cè)用郵箱發(fā)送驗(yàn)證碼的實(shí)現(xiàn)
這篇文章主要介紹了django注冊(cè)用郵箱發(fā)送驗(yàn)證碼的實(shí)現(xiàn),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2021-04-04Python 搭建Web站點(diǎn)之Web服務(wù)器網(wǎng)關(guān)接口
本文是Python 搭建Web站點(diǎn)系列文章的第二篇,接上文,主要給大家來(lái)講述Web服務(wù)器網(wǎng)關(guān)接口WSGI的相關(guān)資料,非常詳細(xì),有需要的小伙伴可以參考下2016-11-11sklearn和keras的數(shù)據(jù)切分與交叉驗(yàn)證的實(shí)例詳解
這篇文章主要介紹了sklearn和keras的數(shù)據(jù)切分與交叉驗(yàn)證的實(shí)例詳解,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-06-06python3實(shí)現(xiàn)繪制二維點(diǎn)圖
今天小編就為大家分享一篇python3實(shí)現(xiàn)繪制二維點(diǎn)圖,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-12-12一篇文章學(xué)會(huì)兩種將python打包成exe的方式
最近有部分小伙伴問(wèn)我,python 寫(xiě)的項(xiàng)目可不可以打包成exe程序,放到?jīng)]有python環(huán)境上的電腦中執(zhí)行? 答案當(dāng)然是可以的,下面這篇文章主要給大家介紹了如何通過(guò)一篇文章學(xué)會(huì)兩種將pyton打包成exe的方式,需要的朋友可以參考下2021-11-11