Python利用matplotlib畫出漂亮的分析圖表
前言
作為一名優(yōu)秀的分析師,還是得學(xué)會(huì)一些讓圖表漂亮的技巧,這樣子拿出去才更加有面子哈哈。好了,今天的錦囊就是介紹一下各種常見的圖表,可以怎么來畫吧。
數(shù)據(jù)集引入
首先引入數(shù)據(jù)集,我們還用一樣的數(shù)據(jù)集吧,分別是 Salary_Ranges_by_Job_Classification
以及 GlobalLandTemperaturesByCity
。(具體數(shù)據(jù)集可以后臺(tái)回復(fù) plot
獲?。?/p>
# 導(dǎo)入一些常用包 import pandas as pd import numpy as np import seaborn as sns %matplotlib inline import matplotlib.pyplot as plt import matplotlib as mpl plt.style.use('fivethirtyeight') #解決中文顯示問題,Mac from matplotlib.font_manager import FontProperties # 查看本機(jī)plt的有效style print(plt.style.available) # 根據(jù)本機(jī)available的style,選擇其中一個(gè),因?yàn)橹爸纆gplot很好看,所以我選擇了它 mpl.style.use(['ggplot']) # ['_classic_test', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark-palette', 'seaborn-dark', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'seaborn', 'Solarize_Light2'] # 數(shù)據(jù)集導(dǎo)入 # 引入第 1 個(gè)數(shù)據(jù)集 Salary_Ranges_by_Job_Classification salary_ranges = pd.read_csv('./data/Salary_Ranges_by_Job_Classification.csv') # 引入第 2 個(gè)數(shù)據(jù)集 GlobalLandTemperaturesByCity climate = pd.read_csv('./data/GlobalLandTemperaturesByCity.csv') # 移除缺失值 climate.dropna(axis=0, inplace=True) # 只看中國(guó) # 日期轉(zhuǎn)換, 將dt 轉(zhuǎn)換為日期,取年份, 注意map的用法 climate['dt'] = pd.to_datetime(climate['dt']) climate['year'] = climate['dt'].map(lambda value: value.year) climate_sub_china = climate.loc[climate['Country'] == 'China'] climate_sub_china['Century'] = climate_sub_china['year'].map(lambda x:int(x/100 +1)) climate.head()
折線圖
折線圖是比較簡(jiǎn)單的圖表了,也沒有什么好優(yōu)化的,顏色看起來順眼就好了。下面是從網(wǎng)上找到了顏色表,可以從中挑選~
# 選擇上海部分天氣數(shù)據(jù) df1 = climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\ .loc[:,['dt','AverageTemperature']]\ .set_index('dt') df1.head()
# 折線圖 df1.plot(colors=['lime']) plt.title('AverageTemperature Of ShangHai') plt.ylabel('Number of immigrants') plt.xlabel('Years') plt.show()
上面這是單條折線圖,多條折線圖也是可以畫的,只需要多增加幾列。
# 多條折線圖 df1 = climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\ .loc[:,['dt','AverageTemperature']]\ .rename(columns={'AverageTemperature':'SH'}) df2 = climate.loc[(climate['Country']=='China')&(climate['City']=='Tianjin')&(climate['dt']>='2010-01-01')]\ .loc[:,['dt','AverageTemperature']]\ .rename(columns={'AverageTemperature':'TJ'}) df3 = climate.loc[(climate['Country']=='China')&(climate['City']=='Shenyang')&(climate['dt']>='2010-01-01')]\ .loc[:,['dt','AverageTemperature']]\ .rename(columns={'AverageTemperature':'SY'}) # 合并 df123 = df1.merge(df2, how='inner', on=['dt'])\ .merge(df3, how='inner', on=['dt'])\ .set_index(['dt']) df123.head()
# 多條折線圖 df123.plot() plt.title('AverageTemperature Of 3 City') plt.ylabel('Number of immigrants') plt.xlabel('Years') plt.show()
餅圖
接下來是畫餅圖,我們可以優(yōu)化的點(diǎn)多了一些,比如說從餅塊的分離程度,我們先畫一個(gè)“低配版”的餅圖。
df1 = salary_ranges.groupby('SetID', axis=0).sum()
# “低配版”餅圖 df1['Step'].plot(kind='pie', figsize=(7,7), autopct='%1.1f%%', shadow=True) plt.axis('equal') plt.show()
# “高配版”餅圖 colors = ['lightgreen', 'lightblue'] #控制餅圖顏色 ['lightgreen', 'lightblue', 'pink', 'purple', 'grey', 'gold'] explode=[0, 0.2] #控制餅圖分離狀態(tài),越大越分離 df1['Step'].plot(kind='pie', figsize=(7, 7), autopct = '%1.1f%%', startangle=90, shadow=True, labels=None, pctdistance=1.12, colors=colors, explode = explode) plt.axis('equal') plt.legend(labels=df1.index, loc='upper right', fontsize=14) plt.show()
散點(diǎn)圖
散點(diǎn)圖可以優(yōu)化的地方比較少了,ggplot2的配色都蠻好看的,正所謂style選的好,省很多功夫!
# 選擇上海部分天氣數(shù)據(jù) df1 = climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\ .loc[:,['dt','AverageTemperature']]\ .rename(columns={'AverageTemperature':'SH'}) df2 = climate.loc[(climate['Country']=='China')&(climate['City']=='Shenyang')&(climate['dt']>='2010-01-01')]\ .loc[:,['dt','AverageTemperature']]\ .rename(columns={'AverageTemperature':'SY'}) # 合并 df12 = df1.merge(df2, how='inner', on=['dt']) df12.head()
# 散點(diǎn)圖 df12.plot(kind='scatter', x='SH', y='SY', figsize=(10, 6), color='darkred') plt.title('Average Temperature Between ShangHai - ShenYang') plt.xlabel('ShangHai') plt.ylabel('ShenYang') plt.show()
面積圖
# 多條折線圖 df1 = climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\ .loc[:,['dt','AverageTemperature']]\ .rename(columns={'AverageTemperature':'SH'}) df2 = climate.loc[(climate['Country']=='China')&(climate['City']=='Tianjin')&(climate['dt']>='2010-01-01')]\ .loc[:,['dt','AverageTemperature']]\ .rename(columns={'AverageTemperature':'TJ'}) df3 = climate.loc[(climate['Country']=='China')&(climate['City']=='Shenyang')&(climate['dt']>='2010-01-01')]\ .loc[:,['dt','AverageTemperature']]\ .rename(columns={'AverageTemperature':'SY'}) # 合并 df123 = df1.merge(df2, how='inner', on=['dt'])\ .merge(df3, how='inner', on=['dt'])\ .set_index(['dt']) df123.head()
colors = ['red', 'pink', 'blue'] #控制餅圖顏色 ['lightgreen', 'lightblue', 'pink', 'purple', 'grey', 'gold'] df123.plot(kind='area', stacked=False, figsize=(20, 10), colors=colors) plt.title('AverageTemperature Of 3 City') plt.ylabel('AverageTemperature') plt.xlabel('Years') plt.show()
直方圖
# 選擇上海部分天氣數(shù)據(jù) df = climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\ .loc[:,['dt','AverageTemperature']]\ .set_index('dt') df.head()
# 最簡(jiǎn)單的直方圖 df['AverageTemperature'].plot(kind='hist', figsize=(8,5), colors=['grey']) plt.title('ShangHai AverageTemperature Of 2010-2013') # add a title to the histogram plt.ylabel('Number of month') # add y-label plt.xlabel('AverageTemperature') # add x-label plt.show()
條形圖
# 選擇上海部分天氣數(shù)據(jù) df = climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\ .loc[:,['dt','AverageTemperature']]\ .set_index('dt') df.head()
df.plot(kind='bar', figsize = (10, 6)) plt.xlabel('Month') plt.ylabel('AverageTemperature') plt.title('AverageTemperature of shanghai') plt.show()
df.plot(kind='barh', figsize=(12, 16), color='steelblue') plt.xlabel('AverageTemperature') plt.ylabel('Month') plt.title('AverageTemperature of shanghai') plt.show()
到此這篇關(guān)于Python利用matplotlib畫出漂亮的分析圖表的文章就介紹到這了,更多相關(guān)Python 繪制分析圖表內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
用Python調(diào)用win命令行提高工作效率的實(shí)例
今天小編就為大家分享一篇用Python調(diào)用win命令行提高工作效率的實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-08-08利用Python進(jìn)行數(shù)據(jù)清洗的操作指南
數(shù)據(jù)清洗是指發(fā)現(xiàn)并糾正數(shù)據(jù)文件中可識(shí)別的錯(cuò)誤的最后一道程序,包括檢查數(shù)據(jù)一致性,處理無效值和缺失值等。本文為大家介紹了Python進(jìn)行數(shù)據(jù)清洗的操作詳解,需要的可以參考一下2022-03-03Python paramiko 模塊淺談與SSH主要功能模擬解析
這篇文章主要介紹了Python paramiko 模塊詳解與SSH主要功能模擬,本文通過圖文并茂的形式給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-02-02Python DataFrame 設(shè)置輸出不顯示index(索引)值的方法
今天小編就為大家分享一篇Python DataFrame 設(shè)置輸出不顯示index(索引)值的方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-06-06