python?Pandas庫read_excel()參數(shù)實例詳解
Pandas read_excel()參數(shù)使用詳解
1.read_excel函數(shù)原型
def read_excel(io,
sheet_name=0,
header=0,
names=None,
index_col=None,
parse_cols=None,
usecols=None,
squeeze=False,
dtype=None,
engine=None,
converters=None,
true_values=None,
false_values=None,
skiprows=None,
nrows=None,
na_values=None,
keep_default_na=True,
na_filter=True,
verbose=False,
parse_dates=False,
date_parser=None,
thousands=None,
comment=None,
skip_footer=0,
skipfooter=0,
convert_float=True,
mangle_dupe_cols=True,
**kwds)
參數(shù)說明:



2.參數(shù)使用舉例
2.1. io和sheet_name參數(shù)
【例1】通過io和sheet_name讀取Excel表
records.xlsx內(nèi)容:
date val percent 2014/3/1 0.947014982 10% 2014/6/1 0.746103818 11% 2014/9/1 0.736764841 12% 2014/12/1 0.724937624 13% 2015/3/1 0.85043738 14% 2015/6/1 0.332503212 15% 2015/9/1 0.75289366 16% 2015/12/1 0.358275104 17% 2016/3/1 0.077250716 18% 2016/6/1 0.436182277 19% 2016/9/1 0.424714671 20% 2016/12/1 0.842471104 21% 2017/3/1 0.740035625 22% 2017/6/1 0.183588529 23% 2017/9/1 0.143363207 24%
Code:
In [166]: import pandas as pd
...: df = pd.read_excel(io="records.xlsx", sheet_name="Sheet1")
...: df
...:
Out[166]:
date val percent
0 2014/3/1 0.947015 10%
1 2014/6/1 0.746104 11%
2 2014/9/1 0.736765 12%
3 2014/12/1 0.724938 13%
4 2015/3/1 0.850437 14%
5 2015/6/1 0.332503 15%
6 2015/9/1 0.752894 16%
7 2015/12/1 0.358275 17%
8 2016/3/1 0.077251 18%
9 2016/6/1 0.436182 19%
10 2016/9/1 0.424715 20%
11 2016/12/1 0.842471 21%
12 2017/3/1 0.740036 22%
13 2017/6/1 0.183589 23%
14 2017/9/1 0.143363 24%
說明:此處io和sheet_name參數(shù)都可以不明確指定,直接使用:
df = pd.read_excel("records.xlsx", "Sheet1")
如果records.xlsx文件只有一張表,或者要讀取的數(shù)據(jù)表為第一張表,sheet_name參數(shù)可以省略:
df = pd.read_excel("records.xlsx")
2.2. header參數(shù)
【例2】通過header參數(shù)指定表頭位置
records.xlsx內(nèi)容:
2020年XXX表 date val percent 2014/3/1 0.947014982 10% 2014/6/1 0.746103818 11% 2014/9/1 0.736764841 12% 2014/12/1 0.724937624 13% 2015/3/1 0.85043738 14% 2015/6/1 0.332503212 15% 2015/9/1 0.75289366 16% 2015/12/1 0.358275104 17% 2016/3/1 0.077250716 18% 2016/6/1 0.436182277 19% 2016/9/1 0.424714671 20% 2016/12/1 0.842471104 21% 2017/3/1 0.740035625 22% 2017/6/1 0.183588529 23% 2017/9/1 0.143363207 24%
我們在【例1】的基礎(chǔ)上為records.xlsx的“Sheet1”表增加了一行表頭說明,如果繼續(xù)使用【例1】的代碼,得到的結(jié)果是這樣的:
In [169]: import pandas as pd
...: df = pd.read_excel("records.xlsx", "Sheet1")
...: df
...:
Out[169]:
2020年XXX表 Unnamed: 1 Unnamed: 2
0 date val percent
1 2014/3/1 0.947015 10%
2 2014/6/1 0.746104 11%
3 2014/9/1 0.736765 12%
4 2014/12/1 0.724938 13%
5 2015/3/1 0.850437 14%
6 2015/6/1 0.332503 15%
7 2015/9/1 0.752894 16%
8 2015/12/1 0.358275 17%
9 2016/3/1 0.077251 18%
10 2016/6/1 0.436182 19%
11 2016/9/1 0.424715 20%
12 2016/12/1 0.842471 21%
13 2017/3/1 0.740036 22%
14 2017/6/1 0.183589 23%
15 2017/9/1 0.143363 24%
這樣得到的列標(biāo)及數(shù)據(jù)都不是我們想要的,這種情況下就需要通過header參數(shù)來指定表頭了,注意到表頭是在第2行,根據(jù)header參數(shù)的說明可知,行號是從0開始計算的,所以header參數(shù)應(yīng)該為1.
Code:
In [170]: import pandas as pd
...: df = pd.read_excel("records.xlsx", "Sheet1", header=1)
...: df
...:
Out[170]:
date val percent
0 2014/3/1 0.947015 10%
1 2014/6/1 0.746104 11%
2 2014/9/1 0.736765 12%
3 2014/12/1 0.724938 13%
4 2015/3/1 0.850437 14%
5 2015/6/1 0.332503 15%
6 2015/9/1 0.752894 16%
7 2015/12/1 0.358275 17%
8 2016/3/1 0.077251 18%
9 2016/6/1 0.436182 19%
10 2016/9/1 0.424715 20%
11 2016/12/1 0.842471 21%
12 2017/3/1 0.740036 22%
2.3. skipfooter參數(shù)
【例3】通過skipfooter參數(shù)忽略表尾數(shù)據(jù)
有時我們的數(shù)據(jù)是從第3方獲取到的,往往會在表的末尾添加一行“數(shù)據(jù)來源:xxx”.如:
2020年XXX表 date val percent 2014/3/1 0.947014982 10% 2014/6/1 0.746103818 11% 2014/9/1 0.736764841 12% 2014/12/1 0.724937624 13% 2015/3/1 0.85043738 14% 2015/6/1 0.332503212 15% 2015/9/1 0.75289366 16% 2015/12/1 0.358275104 17% 2016/3/1 0.077250716 18% 2016/6/1 0.436182277 19% 2016/9/1 0.424714671 20% 2016/12/1 0.842471104 21% 2017/3/1 0.740035625 22% 2017/6/1 0.183588529 23% 2017/9/1 0.143363207 24% 數(shù)據(jù)來源: XXX
這種情況下,可以通過skipfooter參數(shù)來忽略該數(shù)據(jù)。
Code:
In [173]: import pandas as pd
...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1)
...: df
...:
Out[173]:
date val percent
0 2014/3/1 0.947015 10%
1 2014/6/1 0.746104 11%
2 2014/9/1 0.736765 12%
3 2014/12/1 0.724938 13%
4 2015/3/1 0.850437 14%
5 2015/6/1 0.332503 15%
6 2015/9/1 0.752894 16%
7 2015/12/1 0.358275 17%
8 2016/3/1 0.077251 18%
9 2016/6/1 0.436182 19%
10 2016/9/1 0.424715 20%
11 2016/12/1 0.842471 21%
12 2017/3/1 0.740036 22%
13 2017/6/1 0.183589 23%
14 2017/9/1 0.143363 24%
2.4. index_col參數(shù)
【例4】通過index_col參數(shù)指定DataFrame index
在【例3】中,查看我們讀取得到的DataFrame的索引:
In [174]: df.index Out[174]: RangeIndex(start=0, stop=15, step=1)
它是一個自動添加的整型索引,但如果現(xiàn)在我想要使用“date”列作為索引,可以通過index_col參數(shù)指定:
In [175]: import pandas as pd
...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1,index_col=0)
...: df
...:
Out[175]:
val percent
date
2014/3/1 0.947015 10%
2014/6/1 0.746104 11%
2014/9/1 0.736765 12%
2014/12/1 0.724938 13%
2015/3/1 0.850437 14%
2015/6/1 0.332503 15%
2015/9/1 0.752894 16%
2015/12/1 0.358275 17%
2016/3/1 0.077251 18%
2016/6/1 0.436182 19%
2016/9/1 0.424715 20%
2016/12/1 0.842471 21%
2017/3/1 0.740036 22%
2017/6/1 0.183589 23%
2017/9/1 0.143363 24%
In [176]: df.index
Out[176]:
Index(['2014/3/1', '2014/6/1', '2014/9/1', '2014/12/1', '2015/3/1', '2015/6/1',
'2015/9/1', '2015/12/1', '2016/3/1', '2016/6/1', '2016/9/1',
'2016/12/1', '2017/3/1', '2017/6/1', '2017/9/1'],
dtype='object', name='date')
或者改成這樣:
df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1, index_col=“date”)
2.5. parse_dates參數(shù)
查看【例4】index的參數(shù)類型:
In [183]: type(df.index[0]) Out[183]: str
發(fā)現(xiàn)并不是我們想要的日期類型,而是str?,F(xiàn)在我們想把它轉(zhuǎn)換為日期類型,可選的一種方法就是通過parse_dates參數(shù)來實現(xiàn)。
【例5】parse_dates參數(shù)處理日期
Code:
In [184]: import pandas as pd
...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1,i
...: ndex_col="date", parse_dates=True)
...: df
...:
Out[184]:
val percent
date
2014-03-01 0.947015 10%
2014-06-01 0.746104 11%
2014-09-01 0.736765 12%
2014-12-01 0.724938 13%
2015-03-01 0.850437 14%
2015-06-01 0.332503 15%
2015-09-01 0.752894 16%
2015-12-01 0.358275 17%
2016-03-01 0.077251 18%
2016-06-01 0.436182 19%
2016-09-01 0.424715 20%
2016-12-01 0.842471 21%
2017-03-01 0.740036 22%
2017-06-01 0.183589 23%
2017-09-01 0.143363 24%
In [185]: type(df.index[0])
Out[185]: pandas._libs.tslibs.timestamps.Timestamp
當(dāng)parase_date設(shè)置為True時,默認(rèn)將index處理為日期類型。
如果要處理的列不是index列,可以通過parse_dates= "date"來實現(xiàn)。
如果要處理的列包含多個,可以通過parse_dates= [“col1”,“col2”,…]來實現(xiàn)。
2.6. converters參數(shù)
在前面幾個例子中,我們發(fā)現(xiàn)percent列的數(shù)據(jù)都是xx%這樣的表示,且是str類型:
In [187]: type(df["percent"][0]) Out[187]: str
str類型并不是我們所希望的,現(xiàn)在我們希望可以將之轉(zhuǎn)化為float類型,這可以通過converters參數(shù)來實現(xiàn)。
【例6】converters參數(shù)進(jìn)行數(shù)據(jù)類型轉(zhuǎn)換
Code:
In [189]: import pandas as pd
...: def convertPercent(val):
...: return float(val.split("%")[0])*0.01
...:
...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1,i
...: ndex_col="date", parse_dates=True, converters={"percent":convertPerce
...: nt})
...: df
...:
Out[189]:
val percent
date
2014-03-01 0.947015 0.10
2014-06-01 0.746104 0.11
2014-09-01 0.736765 0.12
2014-12-01 0.724938 0.13
2015-03-01 0.850437 0.14
2015-06-01 0.332503 0.15
2015-09-01 0.752894 0.16
2015-12-01 0.358275 0.17
2016-03-01 0.077251 0.18
2016-06-01 0.436182 0.19
2016-09-01 0.424715 0.20
2016-12-01 0.842471 0.21
2017-03-01 0.740036 0.22
2017-06-01 0.183589 0.23
2017-09-01 0.143363 0.24
2.7. na_values參數(shù)
【例7】na_values參數(shù)處理na數(shù)據(jù)
很多時候,并不是所有的數(shù)據(jù)都是有效數(shù)據(jù),例如下表中2014/12/1和2016/6/1兩行的數(shù)據(jù)均為“–”:
2020年XXX表 date val percent 2014/3/1 0.947014982 10% 2014/6/1 0.746103818 11% 2014/9/1 0.736764841 12% 2014/12/1 -- -- 2015/3/1 0.85043738 14% 2015/6/1 0.332503212 15% 2015/9/1 0.75289366 16% 2015/12/1 0.358275104 17% 2016/3/1 0.077250716 18% 2016/6/1 -- -- 2016/9/1 0.424714671 20% 2016/12/1 0.842471104 21% 2017/3/1 0.740035625 22% 2017/6/1 0.183588529 23% 2017/9/1 0.143363207 24% 數(shù)據(jù)來源: XXX
這種情況下可以通過na_values參數(shù)來處理。
Code
In [191]: import pandas as pd
...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1,i
...: ndex_col="date", parse_dates=True, na_values="--")
...: df
...:
Out[191]:
val percent
date
2014-03-01 0.947015 10%
2014-06-01 0.746104 11%
2014-09-01 0.736765 12%
2014-12-01 NaN NaN
2015-03-01 0.850437 14%
2015-06-01 0.332503 15%
2015-09-01 0.752894 16%
2015-12-01 0.358275 17%
2016-03-01 0.077251 18%
2016-06-01 NaN NaN
2016-09-01 0.424715 20%
2016-12-01 0.842471 21%
2017-03-01 0.740036 22%
2017-06-01 0.183589 23%
2017-09-01 0.143363 24%
2.8. usecols參數(shù)
【例8】 usecols參數(shù)選擇列
當(dāng)我們只想處理數(shù)據(jù)表中的某些指定列時,可以通過usecols參數(shù)來指定。例如,我只想處理"date"和"val"兩列數(shù)據(jù),可以這樣通過
usecols=["date","val"]
來指定。
Code
In [193]: import pandas as pd
...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1,i
...: ndex_col="date", parse_dates=True, na_values="--", usecols=["date","v
...: al"])
...: df
...:
Out[193]:
val
date
2014-03-01 0.947015
2014-06-01 0.746104
2014-09-01 0.736765
2014-12-01 NaN
2015-03-01 0.850437
2015-06-01 0.332503
2015-09-01 0.752894
2015-12-01 0.358275
2016-03-01 0.077251
2016-06-01 NaN
2016-09-01 0.424715
2016-12-01 0.842471
2017-03-01 0.740036
2017-06-01 0.183589
2017-09-01 0.143363
總結(jié)
到此這篇關(guān)于python Pandas庫read_excel()參數(shù)的文章就介紹到這了,更多相關(guān)Pandas庫read_excel()參數(shù)內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
jupyter notebook 實現(xiàn)matplotlib圖動態(tài)刷新
這篇文章主要介紹了jupyter notebook 實現(xiàn)matplotlib圖動態(tài)刷新,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-04-04
python中列表推導(dǎo)式與生成器表達(dá)式對比詳解
python當(dāng)然不是一門編譯型語言,但是它還是要被解析成二進(jìn)制的字節(jié)碼才能被執(zhí)行,執(zhí)行它的正是python解釋器,下面這篇文章主要給大家介紹了關(guān)于python中列表推導(dǎo)式與生成器表達(dá)式對比的相關(guān)資料,需要的朋友可以參考下2023-01-01

