Python?seaborn?barplot畫(huà)圖案例
默認(rèn)barplot
import seaborn as sns import matplotlib.pyplot as plt import numpy as np sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #默認(rèn)畫(huà)條形圖 sns.barplot(x="day",y="total_bill",data=df) plt.show() #計(jì)算平均值看是否和條形圖的高度一致 print(df.groupby("day").agg({"total_bill":[np.mean]})) print(df.groupby("day").agg({"total_bill":[np.std]})) # 注意這個(gè)地方error bar顯示并不是標(biāo)準(zhǔn)差
total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000 total_bill std day Thur 7.886170 Fri 8.302660 Sat 9.480419 Sun 8.832122
使用案例
# import libraries import seaborn as sns import numpy as np import matplotlib.pyplot as plt # load dataset tips = sns.load_dataset("tips") # Set the figure size plt.figure(figsize=(14, 8)) # plot a bar chart ax = sns.barplot(x="day", y="total_bill", data=tips, estimator=np.mean, ci=85, capsize=.2, color='lightblue')
修改capsize
ax=sns.barplot(x="day",y="total_bill",data=df,capsize=1.0) plt.show()
顯示error bar的值
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #默認(rèn)畫(huà)條形圖 ax=sns.barplot(x="day",y="total_bill",data=df) plt.show() for p in ax.lines: width = p.get_linewidth() xy = p.get_xydata() # 顯示error bar的值 print(xy) print(width) print(p)
[[ 0. 15.85041935] [ 0. 19.64465726]] 2.7 Line2D(_line0) [[ 1. 13.93096053] [ 1. 21.38463158]] 2.7 Line2D(_line1) [[ 2. 18.57236207] [ 2. 22.40351437]] 2.7 Line2D(_line2) [[ 3. 19.66244737] [ 3. 23.50109868]] 2.7 Line2D(_line3)
annotata error bar
fig, ax = plt.subplots(figsize=(8, 6)) sns.barplot(x='day', y='total_bill', data=df, capsize=0.2, ax=ax) # show the mean for p in ax.patches: h, w, x = p.get_height(), p.get_width(), p.get_x() xy = (x + w / 2., h / 2) text = f'Mean:\n{h:0.2f}' ax.annotate(text=text, xy=xy, ha='center', va='center') ax.set(xlabel='day', ylabel='total_bill') plt.show()
error bar選取sd
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #默認(rèn)畫(huà)條形圖 sns.barplot(x="day",y="total_bill",data=df,ci="sd",capsize=1.0)## 注意這個(gè)ci參數(shù) plt.show() print(df.groupby("day").agg({"total_bill":[np.mean]})) print(df.groupby("day").agg({"total_bill":[np.std]}))
total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000 total_bill std day Thur 7.886170 Fri 8.302660 Sat 9.480419 Sun 8.832122
設(shè)置置信區(qū)間(68)
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #默認(rèn)畫(huà)條形圖 sns.barplot(x="day",y="total_bill",data=df,ci=68,capsize=1.0)## 注意這個(gè)ci參數(shù) plt.show()
設(shè)置置信區(qū)間(95)
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #默認(rèn)畫(huà)條形圖 sns.barplot(x="day",y="total_bill",data=df,ci=95) plt.show() #計(jì)算平均值看是否和條形圖的高度一致 print(df.groupby("day").agg({"total_bill":[np.mean]}))
total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000
dataframe aggregate函數(shù)使用
#計(jì)算平均值看是否和條形圖的高度一致 df = sns.load_dataset("tips") print("="*20) print(df.groupby("day").agg({"total_bill":[np.mean]})) # 分組求均值 print("="*20) print(df.groupby("day").agg({"total_bill":[np.std]})) # 分組求標(biāo)準(zhǔn)差 print("="*20) print(df.groupby("day").agg({"total_bill":"nunique"})) # 這里統(tǒng)計(jì)的是不同的數(shù)目 print("="*20) print(df.groupby("day").agg({"total_bill":"count"})) # 這里統(tǒng)計(jì)的是每個(gè)分組樣本的數(shù)量 print("="*20) print(df["day"].value_counts()) print("="*20)
==================== total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000 ==================== total_bill std day Thur 7.886170 Fri 8.302660 Sat 9.480419 Sun 8.832122 ==================== total_bill day Thur 61 Fri 18 Sat 85 Sun 76 ==================== total_bill day Thur 62 Fri 19 Sat 87 Sun 76 ==================== Sat 87 Sun 76 Thur 62 Fri 19 Name: day, dtype: int64 ====================
dataframe aggregate 自定義函數(shù)
import numpy as np import pandas as pd df = pd.DataFrame({'Buy/Sell': [1, 0, 1, 1, 0, 1, 0, 0], 'Trader': ['A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']}) print(df) def categorize(x): m = x.mean() return 1 if m > 0.5 else 0 if m < 0.5 else np.nan result = df.groupby(['Trader'])['Buy/Sell'].agg([categorize, 'sum', 'count']) result = result.rename(columns={'categorize' : 'Buy/Sell'}) result
Buy/Sell Trader 0 1 A 1 0 A 2 1 B 3 1 B 4 0 B 5 1 C 6 0 C 7 0 C
dataframe aggregate 自定義函數(shù)2
df = sns.load_dataset("tips") #默認(rèn)畫(huà)條形圖 def custom1(x): m = x.mean() s = x.std() n = x.count()# 統(tǒng)計(jì)個(gè)數(shù) #print(n) return m+1.96*s/np.sqrt(n) def custom2(x): m = x.mean() s = x.std() n = x.count()# 統(tǒng)計(jì)個(gè)數(shù) #print(n) return m+s/np.sqrt(n) sns.barplot(x="day",y="total_bill",data=df,ci=95) plt.show() print(df.groupby("day").agg({"total_bill":[np.std,custom1]})) # 分組求標(biāo)準(zhǔn)差 sns.barplot(x="day",y="total_bill",data=df,ci=68) plt.show() print(df.groupby("day").agg({"total_bill":[np.std,custom2]})) #
?[外鏈圖片轉(zhuǎn)存失敗,源站可能有防盜鏈機(jī)制,建議將圖片保存下來(lái)直接上傳(img-pkCx72ui-1658379974318)(output_24_0.png)]
total_bill std custom1 day Thur 7.886170 19.645769 Fri 8.302660 20.884910 Sat 9.480419 22.433538 Sun 8.832122 23.395703
[外鏈圖片轉(zhuǎn)存失敗,源站可能有防盜鏈機(jī)制,建議將圖片保存下來(lái)直接上傳(img-GFyIePmW-1658379974318)(output_24_2.png)]
total_bill std custom2 day Thur 7.886170 18.684287 Fri 8.302660 19.056340 Sat 9.480419 21.457787 Sun 8.832122 22.423114
seaborn顯示網(wǎng)格
ax=sns.barplot(x="day",y="total_bill",data=df,ci=95) ax.yaxis.grid(True) # Hide the horizontal gridlines ax.xaxis.grid(True) # Show the vertical gridlines
seaborn設(shè)置刻度
fig, ax = plt.subplots(figsize=(10, 8)) sns.barplot(x="day",y="total_bill",data=df,ci=95,ax=ax) ax.set_yticks([i for i in range(30)]) ax.yaxis.grid(True) # Hide the horizontal gridlines
使用其他estaimator
#estimator 指定條形圖高度使用相加的和 sns.barplot(x="day",y="total_bill",data=df,estimator=np.sum) plt.show() #計(jì)算想加和看是否和條形圖的高度一致 print(df.groupby("day").agg({"total_bill":[np.sum]})) ''' total_bill sum day Fri 325.88 Sat 1778.40 Sun 1627.16 Thur 1096.33 '''
到此這篇關(guān)于Python seaborn barplot畫(huà)圖案例的文章就介紹到這了,更多相關(guān)Python seaborn barplot 內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python scipy實(shí)現(xiàn)差分進(jìn)化算法
差分進(jìn)化算法是廣義的遺傳算法的一種,核心思想是變異,這篇文章主要為大家介紹的則是著名的scipy庫(kù)中對(duì)差分進(jìn)化算法的實(shí)現(xiàn),希望對(duì)大家有所幫助2023-08-08NCCL深度學(xué)習(xí)Bootstrap網(wǎng)絡(luò)連接建立源碼解析
這篇文章主要為大家介紹了NCCL深度學(xué)習(xí)Bootstrap網(wǎng)絡(luò)連接建立源碼解析,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-04-04python處理“”開(kāi)頭加數(shù)字的html字符方法
在本篇文章里小編給大家整理了關(guān)于python如何處理“&#”開(kāi)頭加數(shù)字的html字符的相關(guān)知識(shí)點(diǎn)總結(jié),有興趣的朋友們學(xué)習(xí)下。2019-06-06Django接收自定義http header過(guò)程詳解
這篇文章主要介紹了Django接收自定義http header過(guò)程詳解,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-08-08