Python實現(xiàn)隨機從圖像中獲取多個patch
經(jīng)常有一些圖像任務需要從一張大圖中截取固定大小的patch來進行訓練。這里面常常存在下面幾個問題:
- patch的位置盡可能隨機,不然數(shù)據(jù)豐富性可能不夠,容易引起過擬合
- 如果原圖較大,讀圖帶來的IO開銷可能會非常大,影響訓練速度,所以最好一次能夠截取多個patch
- 我們經(jīng)常不太希望因為隨機性的存在而使得圖像中某些區(qū)域沒有被覆蓋到,所以還需要注意patch位置的覆蓋程度
基于以上問題,我們可以使用下面的策略從圖像中獲取位置隨機的多個patch:
- 以固定的stride獲取所有patch的左上角坐標
- 對左上角坐標進行隨機擾動
- 對patch的左上角坐標加上寬和高得到右下角坐標
- 檢查patch的坐標是否超出圖像邊界,如果超出則將其收進來,收的過程應保證patch尺寸不變
- 加入ROI(Region Of Interest)功能,也就是說patch不一定非要在整張圖中獲取,而是可以指定ROI區(qū)域
下面是實現(xiàn)代碼和例子:
注意下面代碼只是獲取了patch的bounding box,并沒有把patch截取出來。

# -*- coding: utf-8 -*-
import cv2
import numpy as np
def get_random_patch_bboxes(image, bbox_size, stride, jitter, roi_bbox=None):
"""
Generate random patch bounding boxes for a image around ROI region
Parameters
----------
image: image data read by opencv, shape is [H, W, C]
bbox_size: size of patch bbox, one digit or a list/tuple containing two
digits, defined by (width, height)
stride: stride between adjacent bboxes (before jitter), one digit or a
list/tuple containing two digits, defined by (x, y)
jitter: jitter size for evenly distributed bboxes, one digit or a
list/tuple containing two digits, defined by (x, y)
roi_bbox: roi region, defined by [xmin, ymin, xmax, ymax], default is whole
image region
Returns
-------
patch_bboxes: randomly distributed patch bounding boxes, n x 4 numpy array.
Each bounding box is defined by [xmin, ymin, xmax, ymax]
"""
height, width = image.shape[:2]
bbox_size = _process_geometry_param(bbox_size, min_value=1)
stride = _process_geometry_param(stride, min_value=1)
jitter = _process_geometry_param(jitter, min_value=0)
if bbox_size[0] > width or bbox_size[1] > height:
raise ValueError('box_size must be <= image size')
if roi_bbox is None:
roi_bbox = [0, 0, width, height]
# tl is for top-left, br is for bottom-right
tl_x, tl_y = _get_top_left_points(roi_bbox, bbox_size, stride, jitter)
br_x = tl_x + bbox_size[0]
br_y = tl_y + bbox_size[1]
# shrink bottom-right points to avoid exceeding image border
br_x[br_x > width] = width
br_y[br_y > height] = height
# shrink top-left points to avoid exceeding image border
tl_x = br_x - bbox_size[0]
tl_y = br_y - bbox_size[1]
tl_x[tl_x < 0] = 0
tl_y[tl_y < 0] = 0
# compute bottom-right points again
br_x = tl_x + bbox_size[0]
br_y = tl_y + bbox_size[1]
patch_bboxes = np.concatenate((tl_x, tl_y, br_x, br_y), axis=1)
return patch_bboxes
def _process_geometry_param(param, min_value):
"""
Process and check param, which must be one digit or a list/tuple containing
two digits, and its value must be >= min_value
Parameters
----------
param: parameter to be processed
min_value: min value for param
Returns
-------
param: param after processing
"""
if isinstance(param, (int, float)) or \
isinstance(param, np.ndarray) and param.size == 1:
param = int(np.round(param))
param = [param, param]
else:
if len(param) != 2:
raise ValueError('param must be one digit or two digits')
param = [int(np.round(param[0])), int(np.round(param[1]))]
# check data range using min_value
if not (param[0] >= min_value and param[1] >= min_value):
raise ValueError('param must be >= min_value (%d)' % min_value)
return param
def _get_top_left_points(roi_bbox, bbox_size, stride, jitter):
"""
Generate top-left points for bounding boxes
Parameters
----------
roi_bbox: roi region, defined by [xmin, ymin, xmax, ymax]
bbox_size: size of patch bbox, a list/tuple containing two digits, defined
by (width, height)
stride: stride between adjacent bboxes (before jitter), a list/tuple
containing two digits, defined by (x, y)
jitter: jitter size for evenly distributed bboxes, a list/tuple containing
two digits, defined by (x, y)
Returns
-------
tl_x: x coordinates of top-left points, n x 1 numpy array
tl_y: y coordinates of top-left points, n x 1 numpy array
"""
xmin, ymin, xmax, ymax = roi_bbox
roi_width = xmax - xmin
roi_height = ymax - ymin
# get the offset between the first top-left point of patch box and the
# top-left point of roi_bbox
offset_x = np.arange(0, roi_width, stride[0])[-1] + bbox_size[0]
offset_y = np.arange(0, roi_height, stride[1])[-1] + bbox_size[1]
offset_x = (offset_x - roi_width) // 2
offset_y = (offset_y - roi_height) // 2
# get the coordinates of all top-left points
tl_x = np.arange(xmin, xmax, stride[0]) - offset_x
tl_y = np.arange(ymin, ymax, stride[1]) - offset_y
tl_x, tl_y = np.meshgrid(tl_x, tl_y)
tl_x = np.reshape(tl_x, [-1, 1])
tl_y = np.reshape(tl_y, [-1, 1])
# jitter the coordinates of all top-left points
tl_x += np.random.randint(-jitter[0], jitter[0] + 1, size=tl_x.shape)
tl_y += np.random.randint(-jitter[1], jitter[1] + 1, size=tl_y.shape)
return tl_x, tl_y
if __name__ == '__main__':
image = cv2.imread('1.bmp')
patch_bboxes = get_random_patch_bboxes(
image,
bbox_size=[64, 96],
stride=[128, 128],
jitter=[32, 32],
roi_bbox=[500, 200, 1500, 800])
colors = [
(255, 0, 0),
(0, 255, 0),
(0, 0, 255),
(255, 255, 0),
(255, 0, 255),
(0, 255, 255)]
color_idx = 0
for bbox in patch_bboxes:
color_idx = color_idx % 6
pt1 = (bbox[0], bbox[1])
pt2 = (bbox[2], bbox[3])
cv2.rectangle(image, pt1, pt2, color=colors[color_idx], thickness=2)
color_idx += 1
cv2.namedWindow('image', 0)
cv2.imshow('image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite('image.png', image)
在實際應用中可以進一步增加一些簡單的功能:
1.根據(jù)位置增加一些過濾功能。比如說太靠近邊緣的給剔除掉,有些算法可能有比較嚴重的邊緣效應,所以此時我們可能不太想要邊緣的數(shù)據(jù)加入訓練
2.也可以根據(jù)某些簡單的算法策略進行過濾。比如在超分辨率這樣的任務中,我們可能一般不太關心面積非常大的平坦區(qū)域,比如純色墻面,大片天空等,此時可以使用方差進行過濾
3.設置最多保留數(shù)目。有時候原圖像的大小可能有很大差異,此時利用上述方法得到的patch數(shù)量也就隨之有很大的差異,然而為了保持訓練數(shù)據(jù)的均衡性,我們可以設置最多保留數(shù)目,為了確保覆蓋程度,一般需要在截取之前對patch進行shuffle,或者計算stride
以上就是Python實現(xiàn)隨機從圖像中獲取多個patch的詳細內容,更多關于Python圖像獲取patch的資料請關注腳本之家其它相關文章!
相關文章
Python實現(xiàn)判斷并移除列表指定位置元素的方法
這篇文章主要介紹了Python實現(xiàn)判斷并移除列表指定位置元素的方法,涉及Python針對列表的索引范圍判斷及元素刪除等相關操作技巧,需要的朋友可以參考下2018-04-04
Python:Scrapy框架中Item Pipeline組件使用詳解
這篇文章主要介紹了Python:Scrapy框架中Item Pipeline組件使用詳解,具有一定借鑒價值,需要的朋友可以參考下2017-12-12
如何修復使用 Python ORM 工具 SQLAlchemy 時的常見陷阱
SQLAlchemy 是一個 Python ORM 工具包,它提供使用 Python 訪問 SQL 數(shù)據(jù)庫的功能。這篇文章主要介紹了如何修復使用 Python ORM 工具 SQLAlchemy 時的常見陷阱,需要的朋友可以參考下2019-11-11
使用用Pyspark和GraphX實現(xiàn)解析復雜網(wǎng)絡數(shù)據(jù)
GraphX是Spark提供的圖計算API,它提供了一套強大的工具,這篇文章將詳細為大家介紹如何在Python?/?pyspark環(huán)境中使用graphx進行圖計算,感興趣的可以了解下2024-01-01
python+OpenCV人臉識別考勤系統(tǒng)實現(xiàn)的詳細代碼
作為一個基于人臉識別算法的考勤系統(tǒng)的設計與實現(xiàn)教程,以下內容將提供詳細的步驟和代碼示例。本教程將使用 Python 語言和 OpenCV 庫進行實現(xiàn),需要的朋友可以參考下2023-05-05

