yolov5中train.py代碼注釋詳解與使用教程
前言
最近在用yolov5參加比賽,yolov5的技巧很多,僅僅用來(lái)參加比賽,著實(shí)有點(diǎn)浪費(fèi),所以有必要好好學(xué)習(xí)一番,在認(rèn)真學(xué)習(xí)之前,首先向yolov5的作者致敬,對(duì)了我是用的版本是v6。每每看到這些大神的作品,實(shí)在是有點(diǎn)慚愧,要學(xué)的太多了
1. parse_opt函數(shù)
def parse_opt(known=False): """ argparse 使用方法: parse = argparse.ArgumentParser() parse.add_argument('--s', type=int, default=2, help='flag_int') """ parser = argparse.ArgumentParser() # weights 權(quán)重的路徑./weights/yolov5s.pt.... # yolov5提供4個(gè)不同深度不同寬度的預(yù)訓(xùn)練權(quán)重 用戶可以根據(jù)自己的需求選擇下載 parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path') # cfg 配置文件(網(wǎng)絡(luò)結(jié)構(gòu)) anchor/backbone/numclasses/head,訓(xùn)練自己的數(shù)據(jù)集需要自己生成 # 生成方式——例如我的yolov5s_mchar.yaml 根據(jù)自己的需求選擇復(fù)制./models/下面.yaml文件,5個(gè)文件的區(qū)別在于模型的深度和寬度依次遞增 parser.add_argument('--cfg', type=str, default='', help='model.yaml path') # data 數(shù)據(jù)集配置文件(路徑) train/val/label/, 該文件需要自己生成 # 生成方式——例如我的/data/mchar.yaml 訓(xùn)練集和驗(yàn)證集的路徑 + 類(lèi)別數(shù) + 類(lèi)別名稱(chēng) parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') # hpy超參數(shù)設(shè)置文件(lr/sgd/mixup)./data/hyps/下面有5個(gè)超參數(shù)設(shè)置文件,每個(gè)文件的超參數(shù)初始值有細(xì)微區(qū)別,用戶可以根據(jù)自己的需求選擇其中一個(gè) parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') # epochs 訓(xùn)練輪次, 默認(rèn)輪次為300次 parser.add_argument('--epochs', type=int, default=300) # batchsize 訓(xùn)練批次, 默認(rèn)bs=16 parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') # imagesize 設(shè)置圖片大小, 默認(rèn)640*640 parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') # rect 是否采用矩形訓(xùn)練,默認(rèn)為False parser.add_argument('--rect', action='store_true', help='rectangular training') # resume 是否接著上次的訓(xùn)練結(jié)果,繼續(xù)訓(xùn)練 parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') # nosave 不保存模型 默認(rèn)False(保存) 在./runs/exp*/train/weights/保存兩個(gè)模型 一個(gè)是最后一次的模型 一個(gè)是最好的模型 # best.pt/ last.pt 不建議運(yùn)行代碼添加 --nosave parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') # noval 最后進(jìn)行測(cè)試, 設(shè)置了之后就是訓(xùn)練結(jié)束都測(cè)試一下, 不設(shè)置每輪都計(jì)算mAP, 建議不設(shè)置 parser.add_argument('--noval', action='store_true', help='only validate final epoch') # noautoanchor 不自動(dòng)調(diào)整anchor, 默認(rèn)False, 自動(dòng)調(diào)整anchor parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') # evolve參數(shù)進(jìn)化, 遺傳算法調(diào)參 parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') # bucket谷歌優(yōu)盤(pán) / 一般用不到 parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') # cache 是否提前緩存圖片到內(nèi)存,以加快訓(xùn)練速度,默認(rèn)False parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') # mage-weights 使用圖片采樣策略,默認(rèn)不使用 parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') # device 設(shè)備選擇 parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # multi-scale 多測(cè)度訓(xùn)練 parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') # single-cls 數(shù)據(jù)集是否多類(lèi)/默認(rèn)True parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') # optimizer 優(yōu)化器選擇 / 提供了三種優(yōu)化器 parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') # sync-bn:是否使用跨卡同步BN,在DDP模式使用 parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') # workers/dataloader的最大worker數(shù)量 parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') # 保存路徑 / 默認(rèn)保存路徑 ./runs/ train parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') # 實(shí)驗(yàn)名稱(chēng) parser.add_argument('--name', default='exp', help='save to project/name') # 項(xiàng)目位置是否存在 / 默認(rèn)是都不存在 parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--quad', action='store_true', help='quad dataloader') # cos-lr 余弦學(xué)習(xí)率 parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') # 標(biāo)簽平滑 / 默認(rèn)不增強(qiáng), 用戶可以根據(jù)自己標(biāo)簽的實(shí)際情況設(shè)置這個(gè)參數(shù),建議設(shè)置小一點(diǎn) 0.1 / 0.05 parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') # 早停止忍耐次數(shù) / 100次不更新就停止訓(xùn)練 parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') # --freeze凍結(jié)訓(xùn)練 可以設(shè)置 default = [0] 數(shù)據(jù)量大的情況下,建議不設(shè)置這個(gè)參數(shù) parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') # --save-period 多少個(gè)epoch保存一下checkpoint parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') # --local_rank 進(jìn)程編號(hào) / 多卡使用 parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') # Weights & Biases arguments # 在線可視化工具,類(lèi)似于tensorboard工具,想了解這款工具可以查看https://zhuanlan.zhihu.com/p/266337608 parser.add_argument('--entity', default=None, help='W&B: Entity') # upload_dataset: 是否上傳dataset到wandb tabel(將數(shù)據(jù)集作為交互式 dsviz表 在瀏覽器中查看、查詢、篩選和分析數(shù)據(jù)集) 默認(rèn)False parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option') # bbox_interval: 設(shè)置界框圖像記錄間隔 Set bounding-box image logging interval for W&B 默認(rèn)-1 opt.epochs // 10 parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval') # 使用數(shù)據(jù)的版本 parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use') # 傳入的基本配置中沒(méi)有的參數(shù)也不會(huì)報(bào)錯(cuò)# parse_args()和parse_known_args() # parse = argparse.ArgumentParser() # parse.add_argument('--s', type=int, default=2, help='flag_int') # parser.parse_args() / parse_args() opt = parser.parse_known_args()[0] if known else parser.parse_args() return opt
2. main函數(shù)
2.1 main函數(shù)——打印關(guān)鍵詞/安裝環(huán)境
def main(opt, callbacks=Callbacks()): ############################################### 1. Checks ################################################## if RANK in [-1, 0]: # 輸出所有訓(xùn)練參數(shù) / 參數(shù)以彩色的方式表現(xiàn) print_args(FILE.stem, opt) # 檢查代碼版本是否更新 check_git_status() # 檢查安裝是否都安裝了 requirements.txt, 缺少安裝包安裝。 # 缺少安裝包:建議使用 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt check_requirements(exclude=['thop'])
2.2 main函數(shù)——是否進(jìn)行斷點(diǎn)訓(xùn)練
############################################### 2. Resume ################################################## # 初始化可視化工具wandb,wandb使用教程看https://zhuanlan.zhihu.com/p/266337608 # 斷點(diǎn)訓(xùn)練使用教程可以查看:https://blog.csdn.net/CharmsLUO/article/details/123410081 if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run # isinstance()是否是已經(jīng)知道的類(lèi)型 # 如果resume是True,則通過(guò)get_lastest_run()函數(shù)找到runs為文件夾中最近的權(quán)重文件last.pt ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path # 判斷是否是文件 assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' # # 相關(guān)的opt參數(shù)也要替換成last.pt中的opt參數(shù) safe_load()yaml文件加載數(shù)據(jù) with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f: # argparse.Namespace 可以理解為字典 opt = argparse.Namespace(**yaml.safe_load(f)) # replace opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate # 打印斷點(diǎn)訓(xùn)練信息 LOGGER.info(f'Resuming training from {ckpt}') else: # 不使用斷點(diǎn)訓(xùn)練就在加載輸入的參數(shù) opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' # opt.evolve=False,opt.name='exp' opt.evolve=True,opt.name='evolve' if opt.evolve: if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve opt.project = str(ROOT / 'runs/evolve') opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume # 保存相關(guān)信息 opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
2.3 main函數(shù)——是否分布式訓(xùn)練
# ############################################## 3.DDP mode ############################################### # 選擇設(shè)備cpu/cuda device = select_device(opt.device, batch_size=opt.batch_size) # 多卡訓(xùn)練GPU if LOCAL_RANK != -1: msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' assert not opt.image_weights, f'--image-weights {msg}' assert not opt.evolve, f'--evolve {msg}' assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size' assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' # 根據(jù)編號(hào)選擇設(shè)備 #使用torch.cuda.set_device()可以更方便地將模型和數(shù)據(jù)加載到對(duì)應(yīng)GPU上, 直接定義模型之前加入一行代碼即可 # torch.cuda.set_device(gpu_id) #單卡 # torch.cuda.set_device('cuda:'+str(gpu_ids)) #可指定多卡 torch.cuda.set_device(LOCAL_RANK) device = torch.device('cuda', LOCAL_RANK) # 初始化多進(jìn)程 dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
2.4 main函數(shù)——是否進(jìn)化訓(xùn)練/遺傳算法調(diào)參
################################################ 4. Train ################################################# # 不設(shè)置evolve直接調(diào)用train訓(xùn)練 if not opt.evolve: train(opt.hyp, opt, device, callbacks) # 分布式訓(xùn)練 WORLD_SIZE=主機(jī)的數(shù)量 # 如果是使用多卡訓(xùn)練, 那么銷(xiāo)毀進(jìn)程組 if WORLD_SIZE > 1 and RANK == 0: LOGGER.info('Destroying process group... ') # 使用多卡訓(xùn)練, 那么銷(xiāo)毀進(jìn)程組 dist.destroy_process_group() # Evolve hyperparameters (optional) # 遺傳凈化算法/一邊訓(xùn)練一遍進(jìn)化 # 了解遺傳算法可以查看我的博客: else: # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) # 超參數(shù)列表(突變范圍 - 最小值 - 最大值) meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr 'box': (1, 0.02, 0.2), # box loss gain 'cls': (1, 0.2, 4.0), # cls loss gain 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight 'iou_t': (0, 0.1, 0.7), # IoU training threshold 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) 'scale': (1, 0.0, 0.9), # image scale (+/- gain) 'shear': (1, 0.0, 10.0), # image shear (+/- deg) 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) 'mosaic': (1, 0.0, 1.0), # image mixup (probability) 'mixup': (1, 0.0, 1.0), # image mixup (probability) 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability) with open(opt.hyp, errors='ignore') as f: # 加載yaml超參數(shù) hyp = yaml.safe_load(f) # load hyps dict if 'anchors' not in hyp: # anchors commented in hyp.yaml hyp['anchors'] = 3 opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices # 保存進(jìn)化的超參數(shù)列表 evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' if opt.bucket: os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists """ 遺傳算法調(diào)參:遵循適者生存、優(yōu)勝劣汰的法則,即尋優(yōu)過(guò)程中保留有用的,去除無(wú)用的。 遺傳算法需要提前設(shè)置4個(gè)參數(shù): 群體大小/進(jìn)化代數(shù)/交叉概率/變異概率 """ # 默認(rèn)選擇進(jìn)化300代 for _ in range(opt.evolve): # generations to evolve if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate # Select parent(s) # 進(jìn)化方式--single / --weight parent = 'single' # parent selection method: 'single' or 'weighted' # 加載evolve.txt文件 x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) # 選取進(jìn)化結(jié)果代數(shù) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations # 根據(jù)resluts計(jì)算hyp權(quán)重 w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) # 根據(jù)不同進(jìn)化方式獲得base hyp if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate # # 獲取突變初始值 mp, s = 0.8, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 ng = len(meta) v = np.ones(ng) # 設(shè)置突變 while all(v == 1): # mutate until a change occurs (prevent duplicates) # 將突變添加到base hyp上 # [i+7]是因?yàn)閤中前7個(gè)數(shù)字為results的指標(biāo)(P,R,mAP,F1,test_loss=(box,obj,cls)),之后才是超參數(shù)hyp v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = float(x[i + 7] * v[i]) # mutate # Constrain to limits # 限制超參再規(guī)定范圍 for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) # lower limit hyp[k] = min(hyp[k], v[2]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits # Train mutation # 訓(xùn)練 使用突變后的參超 測(cè)試其效果 results = train(hyp.copy(), opt, device, callbacks) callbacks = Callbacks() # Write mutation results # Write mutation results # 將結(jié)果寫(xiě)入results 并將對(duì)應(yīng)的hyp寫(xiě)到evolve.txt evolve.txt中每一行為一次進(jìn)化的結(jié)果 # 每行前七個(gè)數(shù)字 (P, R, mAP, F1, test_losses(GIOU, obj, cls)) 之后為hyp # 保存hyp到y(tǒng)aml文件 print_mutation(results, hyp.copy(), save_dir, opt.bucket) # Plot results # 將結(jié)果可視化 / 輸出保存信息 plot_evolve(evolve_csv) LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' f"Results saved to {colorstr('bold', save_dir)}\n" f'Usage example: $ python train.py --hyp {evolve_yaml}')
3. train函數(shù)
3.1 train函數(shù)——基本配置信息
################################################ 1. 傳入?yún)?shù)/基本配置 ############################################# # opt傳入的參數(shù) save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze # Directories w = save_dir / 'weights' # weights dir # 新建文件夾 weights train evolve (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir # 保存訓(xùn)練結(jié)果的目錄 如runs/train/exp*/weights/last.pt last, best = w / 'last.pt', w / 'best.pt' # Hyperparameters # isinstance()是否是已知類(lèi)型 if isinstance(hyp, str): with open(hyp, errors='ignore') as f: # 加載yaml文件 hyp = yaml.safe_load(f) # load hyps dict # 打印超參數(shù) 彩色字體 LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) # Save run settings # 如果不使用進(jìn)化訓(xùn)練 if not evolve: # safe_dump() python值轉(zhuǎn)化為yaml序列化 with open(save_dir / 'hyp.yaml', 'w') as f: yaml.safe_dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: # vars(opt) 的作用是把數(shù)據(jù)類(lèi)型是Namespace的數(shù)據(jù)轉(zhuǎn)換為字典的形式。 yaml.safe_dump(vars(opt), f, sort_keys=False) # Loggers data_dict = None if RANK in [-1, 0]: loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance if loggers.wandb: data_dict = loggers.wandb.data_dict if resume: weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size # Register actions for k in methods(loggers): callbacks.register_action(k, callback=getattr(loggers, k)) # Config 畫(huà)圖 plots = not evolve # create plots # GPU / CPU cuda = device.type != 'cpu' # 隨機(jī)種子 init_seeds(1 + RANK) # 存在子進(jìn)程-分布式訓(xùn)練 with torch_distributed_zero_first(LOCAL_RANK): data_dict = data_dict or check_dataset(data) # check if None # 訓(xùn)練集和驗(yàn)證集的位路徑 train_path, val_path = data_dict['train'], data_dict['val'] # 設(shè)置類(lèi)別 是否單類(lèi) nc = 1 if single_cls else int(data_dict['nc']) # number of classes # 類(lèi)別對(duì)應(yīng)的名稱(chēng) names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names # 判斷類(lèi)別長(zhǎng)度和文件是否對(duì)應(yīng) assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check # 當(dāng)前數(shù)據(jù)集是否是coco數(shù)據(jù)集(80個(gè)類(lèi)別) is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
3.2 train函數(shù)——模型加載/斷點(diǎn)訓(xùn)練
################################################### 2. Model ########################################### # 檢查文件后綴是否是.pt check_suffix(weights, '.pt') # check weights # 加載預(yù)訓(xùn)練權(quán)重 yolov5提供了5個(gè)不同的預(yù)訓(xùn)練權(quán)重,大家可以根據(jù)自己的模型選擇預(yù)訓(xùn)練權(quán)重 pretrained = weights.endswith('.pt') if pretrained: # # torch_distributed_zero_first(RANK): 用于同步不同進(jìn)程對(duì)數(shù)據(jù)讀取的上下文管理器 with torch_distributed_zero_first(LOCAL_RANK): # 如果本地不存在就從網(wǎng)站上下載 weights = attempt_download(weights) # download if not found locally # 加載模型以及參數(shù) ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak """ 兩種加載模型的方式: opt.cfg / ckpt['model'].yaml 使用resume-斷點(diǎn)訓(xùn)練: 選擇ckpt['model']yaml創(chuàng)建模型, 且不加載anchor 使用斷點(diǎn)訓(xùn)練時(shí),保存的模型會(huì)保存anchor,所以不需要加載 """ model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 # 篩選字典中的鍵值對(duì) 把exclude刪除 csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(csd, strict=False) # load LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report else: # 不適用預(yù)訓(xùn)練權(quán)重 model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
3.3 train函數(shù)——凍結(jié)訓(xùn)練/凍結(jié)層設(shè)置
################################################ 3. Freeze/凍結(jié)訓(xùn)練 ######################################### # 凍結(jié)訓(xùn)練的網(wǎng)絡(luò)層 freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): LOGGER.info(f'freezing {k}') # 凍結(jié)訓(xùn)練的層梯度不更新 v.requires_grad = False
3.4 train函數(shù)——圖片大小/batchsize設(shè)置
# Image size gs = max(int(model.stride.max()), 32) # grid size (max stride) # 檢查圖片的大小 imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple # Batch size if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size batch_size = check_train_batch_size(model, imgsz) loggers.on_params_update({"batch_size": batch_size})
3.5 train函數(shù)——優(yōu)化器選擇 / 分組優(yōu)化設(shè)置
############################################ 4. Optimizer/優(yōu)化器 ########################################### """ nbs = 64 batchsize = 16 accumulate = 64 / 16 = 4 模型梯度累計(jì)accumulate次之后就更新一次模型 相當(dāng)于使用更大batch_size """ nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing # 權(quán)重衰減參數(shù) hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay # 打印日志 LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") # 將模型參數(shù)分為三組(weights、biases、bn)來(lái)進(jìn)行分組優(yōu)化 g0, g1, g2 = [], [], [] # optimizer parameter groups for v in model.modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias g2.append(v.bias) if isinstance(v, nn.BatchNorm2d): # weight (no decay) g0.append(v.weight) elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) g1.append(v.weight) # 選擇優(yōu)化器 / 提供了三個(gè)優(yōu)化器——g0 if opt.optimizer == 'Adam': optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum elif opt.optimizer == 'AdamW': optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) # 設(shè)置優(yōu)化的方式——g1 / g2 optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay optimizer.add_param_group({'params': g2}) # add g2 (biases) # 打印log日志 優(yōu)化信息 LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups " f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias") # 刪除變量 del g0, g1, g2
3.6 train函數(shù)——學(xué)習(xí)率/ema/歸一化/單機(jī)多卡
############################################ 5. Scheduler ############################################## # 是否余弦學(xué)習(xí)率調(diào)整方式 if opt.cos_lr: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] else: lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA # 使用EMA(指數(shù)移動(dòng)平均)對(duì)模型的參數(shù)做平均, 一種給予近期數(shù)據(jù)更高權(quán)重的平均方法, 以求提高測(cè)試指標(biāo)并增加模型魯棒。 ema = ModelEMA(model) if RANK in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Epochs start_epoch = ckpt['epoch'] + 1 if resume: assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.' if epochs < start_epoch: LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.") epochs += ckpt['epoch'] # finetune additional epochs del ckpt, csd # DP mode # DP: 單機(jī)多卡模式 if cuda and RANK == -1 and torch.cuda.device_count() > 1: LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') model = torch.nn.DataParallel(model) # SyncBatchNorm 多卡歸一化 if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) # 打印信息 LOGGER.info('Using SyncBatchNorm()')
3.7 train函數(shù)——數(shù)據(jù)加載 / anchor調(diào)整
# ############################################## 6. Trainloader / 數(shù)據(jù)加載 ###################################### # 訓(xùn)練集數(shù)據(jù)加載 train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache, rect=opt.rect, rank=LOCAL_RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '), shuffle=True) # 標(biāo)簽編號(hào)最大值 mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class # 類(lèi)別總數(shù) nb = len(train_loader) # number of batches # 判斷編號(hào)是否正確 assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' # Process 0 # 驗(yàn)證集數(shù)據(jù)集加載 if RANK in [-1, 0]: val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1, workers=workers * 2, pad=0.5, prefix=colorstr('val: '))[0] # 沒(méi)有使用斷點(diǎn)訓(xùn)練 if not resume: labels = np.concatenate(dataset.labels, 0) # c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: # 畫(huà)出標(biāo)簽信息 plot_labels(labels, names, save_dir) # Anchors # 自適應(yīng)anchor / anchor可以理解為程序預(yù)測(cè)的box # 根據(jù)k-mean算法聚類(lèi)生成新的錨框 if not opt.noautoanchor: # 參數(shù)dataset代表的是訓(xùn)練集,hyp['anchor_t']是從配置文件hpy.scratch.yaml讀取的超參數(shù) anchor_t:4.0 # 當(dāng)配置文件中的anchor計(jì)算bpr(best possible recall)小于0.98時(shí)才會(huì)重新計(jì)算anchor。 # best possible recall最大值1,如果bpr小于0.98,程序會(huì)根據(jù)數(shù)據(jù)集的label自動(dòng)學(xué)習(xí)anchor的尺寸 check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # 半進(jìn)度 model.half().float() # pre-reduce anchor precision callbacks.run('on_pretrain_routine_end')
3.8 train函數(shù)——訓(xùn)練配置/多尺度訓(xùn)練/熱身訓(xùn)練
# #################################################### 7. 訓(xùn)練 ############################################### # DDP mode # DDP:多機(jī)多卡 if cuda and RANK != -1: model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) # Model attributes nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) hyp['box'] *= 3 / nl # scale to layers hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers # 標(biāo)簽平滑 hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model # 從訓(xùn)練樣本標(biāo)簽得到類(lèi)別權(quán)重(和類(lèi)別中的目標(biāo)數(shù)即類(lèi)別頻率成反比) model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() # # 獲取熱身迭代的次數(shù)iterations: 3 nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training last_opt_step = -1 # # 初始化maps(每個(gè)類(lèi)別的map)和results maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) # 設(shè)置學(xué)習(xí)率衰減所進(jìn)行到的輪次,即使打斷訓(xùn)練,使用resume接著訓(xùn)練也能正常銜接之前的訓(xùn)練進(jìn)行學(xué)習(xí)率衰減 scheduler.last_epoch = start_epoch - 1 # do not move # 設(shè)置amp混合精度訓(xùn)練 scaler = amp.GradScaler(enabled=cuda) # 早停止,不更新結(jié)束訓(xùn)練 stopper = EarlyStopping(patience=opt.patience) # 初始化損失函數(shù) compute_loss = ComputeLoss(model) # init loss class # 打印信息 LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' f"Logging results to {colorstr('bold', save_dir)}\n" f'Starting training for {epochs} epochs...') # 開(kāi)始走起訓(xùn)練 for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional, single-GPU only) # opt.image_weights if opt.image_weights: """ 如果設(shè)置進(jìn)行圖片采樣策略, 則根據(jù)前面初始化的圖片采樣權(quán)重model.class_weights以及maps配合每張圖片包含的類(lèi)別數(shù) 通過(guò)random.choices生成圖片索引indices從而進(jìn)行采樣 """ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Update mosaic border (optional) # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(3, device=device) # mean losses if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size')) if RANK in [-1, 0]: # 進(jìn)度條顯示 pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar # 梯度清零 optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 """ 熱身訓(xùn)練(前nw次迭代) 在前nw次迭代中, 根據(jù)以下方式選取accumulate和學(xué)習(xí)率 """ # Warmup if ni <= nw: xi = [0, nw] # x interp # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): """ bias的學(xué)習(xí)率從0.1下降到基準(zhǔn)學(xué)習(xí)率lr*lf(epoch), 其他的參數(shù)學(xué)習(xí)率從0增加到lr*lf(epoch). lf為上面設(shè)置的余弦退火的衰減函數(shù) 動(dòng)量momentum也從0.9慢慢變到hyp['momentum'](default=0.937) """ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: """ Multi-scale 設(shè)置多尺度訓(xùn)練,從imgsz * 0.5, imgsz * 1.5 + gs隨機(jī)選取尺寸 """ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward / 前向傳播 with amp.autocast(enabled=cuda): pred = model(imgs) # forward # # 計(jì)算損失,包括分類(lèi)損失,objectness損失,框的回歸損失 # loss為總損失值,loss_items為一個(gè)元組,包含分類(lèi)損失,objectness損失,框的回歸損失和總損失 loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: # 平均不同gpu之間的梯度 loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize # 模型反向傳播accumulate次之后再根據(jù)累積的梯度更新一次參數(shù) if ni - last_opt_step >= accumulate: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Log if RANK in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % ( f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn) if callbacks.stop_training: return # end batch ------------------------------------------------------------------------------------------------ # Scheduler 進(jìn)行學(xué)習(xí)率衰減 lr = [x['lr'] for x in optimizer.param_groups] # for loggers scheduler.step() if RANK in [-1, 0]: # mAP callbacks.run('on_train_epoch_end', epoch=epoch) # 將model中的屬性賦值給ema ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) # 判斷當(dāng)前的epoch是否是最后一輪 final_epoch = (epoch + 1 == epochs) or stopper.possible_stop # notest: 是否只測(cè)試最后一輪 True: 只測(cè)試最后一輪 False: 每輪訓(xùn)練完都測(cè)試mAP if not noval or final_epoch: # Calculate mAP """ 測(cè)試使用的是ema(指數(shù)移動(dòng)平均 對(duì)模型的參數(shù)做平均)的模型 results: [1] Precision 所有類(lèi)別的平均precision(最大f1時(shí)) [1] Recall 所有類(lèi)別的平均recall [1] map@0.5 所有類(lèi)別的平均mAP@0.5 [1] map@0.5:0.95 所有類(lèi)別的平均mAP@0.5:0.95 [1] box_loss 驗(yàn)證集回歸損失, obj_loss 驗(yàn)證集置信度損失, cls_loss 驗(yàn)證集分類(lèi)損失 maps: [80] 所有類(lèi)別的mAP@0.5:0.95 """ results, maps, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=ema.ema, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, plots=False, callbacks=callbacks, compute_loss=compute_loss) # Update best mAP # Update best mAP 這里的best mAP其實(shí)是[P, R, mAP@.5, mAP@.5-.95]的一個(gè)加權(quán)值 # fi: [P, R, mAP@.5, mAP@.5-.95]的一個(gè)加權(quán)值 = 0.1*mAP@.5 + 0.9*mAP@.5-.95 fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] if fi > best_fitness: best_fitness = fi log_vals = list(mloss) + list(results) + lr callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) # Save model """ 保存帶checkpoint的模型用于inference或resuming training 保存模型, 還保存了epoch, results, optimizer等信息 optimizer將不會(huì)在最后一輪完成后保存 model保存的是EMA的模型 """ if (not nosave) or (final_epoch and not evolve): # if save ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None, 'date': datetime.now().isoformat()} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0): torch.save(ckpt, w / f'epoch{epoch}.pt') del ckpt callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) # Stop Single-GPU if RANK == -1 and stopper(epoch=epoch, fitness=fi): break # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576 # stop = stopper(epoch=epoch, fitness=fi) # if RANK == 0: # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks # Stop DPP # with torch_distributed_zero_first(RANK): # if stop: # break # must break all DDP ranks
3.9 train函數(shù)——訓(xùn)練結(jié)束/打印信息/保存結(jié)果
############################################### 8. 打印訓(xùn)練信息 ########################################## if RANK in [-1, 0]: LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') for f in last, best: if f.exists(): # 模型訓(xùn)練完后, strip_optimizer函數(shù)將optimizer從ckpt中刪除 # 并對(duì)模型進(jìn)行model.half() 將Float32->Float16 這樣可以減少模型大小, 提高inference速度 strip_optimizer(f) # strip optimizers if f is best: LOGGER.info(f'\nValidating {f}...') results, _, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=attempt_load(f, device).half(), iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65 single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=is_coco, verbose=True, plots=True, callbacks=callbacks, compute_loss=compute_loss) # val best model with plots if is_coco: callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) # 回調(diào)函數(shù) callbacks.run('on_train_end', last, best, plots, epoch, results) LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") # 釋放顯存 torch.cuda.empty_cache() return results
4. run函數(shù)
def run(**kwargs): # 執(zhí)行這個(gè)腳本/ 調(diào)用train函數(shù) / 開(kāi)啟訓(xùn)練 # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') opt = parse_opt(True) for k, v in kwargs.items(): # setattr() 賦值屬性,屬性不存在則創(chuàng)建一個(gè)賦值 setattr(opt, k, v) main(opt) return opt
5.全部代碼注釋
# YOLOv5 ?? by Ultralytics, GPL-3.0 license """ Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release. Models: https://github.com/ultralytics/yolov5/tree/master/models Datasets: https://github.com/ultralytics/yolov5/tree/master/data Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data Usage: $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (RECOMMENDED) $ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch """ import argparse import math import os import random import sys import time from copy import deepcopy from datetime import datetime from pathlib import Path import numpy as np import torch import torch.distributed as dist import torch.nn as nn import yaml from torch.cuda import amp from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import SGD, Adam, AdamW, lr_scheduler from tqdm import tqdm FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative import val # for end-of-epoch mAP from models.experimental import attempt_load from models.yolo import Model from utils.autoanchor import check_anchors from utils.autobatch import check_train_batch_size from utils.callbacks import Callbacks from utils.datasets import create_dataloader from utils.downloads import attempt_download from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer) from utils.loggers import Loggers from utils.loggers.wandb.wandb_utils import check_wandb_resume from utils.loss import ComputeLoss from utils.metrics import fitness from utils.plots import plot_evolve, plot_labels from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html RANK = int(os.getenv('RANK', -1)) WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) def train(hyp, # path/to/hyp.yaml or hyp dictionary opt, device, callbacks ): ################################################ 1. 傳入?yún)?shù)/基本配置 ############################################# # opt傳入的參數(shù) save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze # Directories w = save_dir / 'weights' # weights dir # 新建文件夾 weights train evolve (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir # 保存訓(xùn)練結(jié)果的目錄 如runs/train/exp*/weights/last.pt last, best = w / 'last.pt', w / 'best.pt' # Hyperparameters # isinstance()是否是已知類(lèi)型 if isinstance(hyp, str): with open(hyp, errors='ignore') as f: # 加載yaml文件 hyp = yaml.safe_load(f) # load hyps dict # 打印超參數(shù) 彩色字體 LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) # Save run settings # 如果不使用進(jìn)化訓(xùn)練 if not evolve: # safe_dump() python值轉(zhuǎn)化為yaml序列化 with open(save_dir / 'hyp.yaml', 'w') as f: yaml.safe_dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: # vars(opt) 的作用是把數(shù)據(jù)類(lèi)型是Namespace的數(shù)據(jù)轉(zhuǎn)換為字典的形式。 yaml.safe_dump(vars(opt), f, sort_keys=False) # Loggers data_dict = None if RANK in [-1, 0]: loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance if loggers.wandb: data_dict = loggers.wandb.data_dict if resume: weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size # Register actions for k in methods(loggers): callbacks.register_action(k, callback=getattr(loggers, k)) # Config 畫(huà)圖 plots = not evolve # create plots # GPU / CPU cuda = device.type != 'cpu' # 隨機(jī)種子 init_seeds(1 + RANK) # 存在子進(jìn)程-分布式訓(xùn)練 with torch_distributed_zero_first(LOCAL_RANK): data_dict = data_dict or check_dataset(data) # check if None # 訓(xùn)練集和驗(yàn)證集的位路徑 train_path, val_path = data_dict['train'], data_dict['val'] # 設(shè)置類(lèi)別 是否單類(lèi) nc = 1 if single_cls else int(data_dict['nc']) # number of classes # 類(lèi)別對(duì)應(yīng)的名稱(chēng) names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names # 判斷類(lèi)別長(zhǎng)度和文件是否對(duì)應(yīng) assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check # 當(dāng)前數(shù)據(jù)集是否是coco數(shù)據(jù)集(80個(gè)類(lèi)別) is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset ################################################### 2. Model ########################################### # 檢查文件后綴是否是.pt check_suffix(weights, '.pt') # check weights # 加載預(yù)訓(xùn)練權(quán)重 yolov5提供了5個(gè)不同的預(yù)訓(xùn)練權(quán)重,大家可以根據(jù)自己的模型選擇預(yù)訓(xùn)練權(quán)重 pretrained = weights.endswith('.pt') if pretrained: # # torch_distributed_zero_first(RANK): 用于同步不同進(jìn)程對(duì)數(shù)據(jù)讀取的上下文管理器 with torch_distributed_zero_first(LOCAL_RANK): # 如果本地不存在就從網(wǎng)站上下載 weights = attempt_download(weights) # download if not found locally # 加載模型以及參數(shù) ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak """ 兩種加載模型的方式: opt.cfg / ckpt['model'].yaml 使用resume-斷點(diǎn)訓(xùn)練: 選擇ckpt['model']yaml創(chuàng)建模型, 且不加載anchor 使用斷點(diǎn)訓(xùn)練時(shí),保存的模型會(huì)保存anchor,所以不需要加載 """ model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 # 篩選字典中的鍵值對(duì) 把exclude刪除 csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(csd, strict=False) # load LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report else: # 不適用預(yù)訓(xùn)練權(quán)重 model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create ################################################ 3. Freeze/凍結(jié)訓(xùn)練 ######################################### # 凍結(jié)訓(xùn)練的網(wǎng)絡(luò)層 freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): LOGGER.info(f'freezing {k}') # 凍結(jié)訓(xùn)練的層梯度不更新 v.requires_grad = False # Image size gs = max(int(model.stride.max()), 32) # grid size (max stride) # 檢查圖片的大小 imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple # Batch size if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size batch_size = check_train_batch_size(model, imgsz) loggers.on_params_update({"batch_size": batch_size}) ############################################ 4. Optimizer/優(yōu)化器 ########################################### """ nbs = 64 batchsize = 16 accumulate = 64 / 16 = 4 模型梯度累計(jì)accumulate次之后就更新一次模型 相當(dāng)于使用更大batch_size """ nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing # 權(quán)重衰減參數(shù) hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay # 打印日志 LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") # 將模型參數(shù)分為三組(weights、biases、bn)來(lái)進(jìn)行分組優(yōu)化 g0, g1, g2 = [], [], [] # optimizer parameter groups for v in model.modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias g2.append(v.bias) if isinstance(v, nn.BatchNorm2d): # weight (no decay) g0.append(v.weight) elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) g1.append(v.weight) # 選擇優(yōu)化器 / 提供了三個(gè)優(yōu)化器——g0 if opt.optimizer == 'Adam': optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum elif opt.optimizer == 'AdamW': optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) # 設(shè)置優(yōu)化的方式——g1 / g2 optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay optimizer.add_param_group({'params': g2}) # add g2 (biases) # 打印log日志 優(yōu)化信息 LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups " f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias") # 刪除變量 del g0, g1, g2 ############################################ 5. Scheduler ############################################## # 是否余弦學(xué)習(xí)率調(diào)整方式 if opt.cos_lr: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] else: lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA # 使用EMA(指數(shù)移動(dòng)平均)對(duì)模型的參數(shù)做平均, 一種給予近期數(shù)據(jù)更高權(quán)重的平均方法, 以求提高測(cè)試指標(biāo)并增加模型魯棒。 ema = ModelEMA(model) if RANK in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Epochs start_epoch = ckpt['epoch'] + 1 if resume: assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.' if epochs < start_epoch: LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.") epochs += ckpt['epoch'] # finetune additional epochs del ckpt, csd # DP mode # DP: 單機(jī)多卡模式 if cuda and RANK == -1 and torch.cuda.device_count() > 1: LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') model = torch.nn.DataParallel(model) # SyncBatchNorm 多卡歸一化 if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) # 打印信息 LOGGER.info('Using SyncBatchNorm()') # ############################################## 6. Trainloader / 數(shù)據(jù)加載 ###################################### # 訓(xùn)練集數(shù)據(jù)加載 train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache, rect=opt.rect, rank=LOCAL_RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '), shuffle=True) # 標(biāo)簽編號(hào)最大值 mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class # 類(lèi)別總數(shù) nb = len(train_loader) # number of batches # 判斷編號(hào)是否正確 assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' # Process 0 # 驗(yàn)證集數(shù)據(jù)集加載 if RANK in [-1, 0]: val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1, workers=workers * 2, pad=0.5, prefix=colorstr('val: '))[0] # 沒(méi)有使用斷點(diǎn)訓(xùn)練 if not resume: labels = np.concatenate(dataset.labels, 0) # c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: # 畫(huà)出標(biāo)簽信息 plot_labels(labels, names, save_dir) # Anchors # 自適應(yīng)anchor / anchor可以理解為程序預(yù)測(cè)的box # 根據(jù)k-mean算法聚類(lèi)生成新的錨框 if not opt.noautoanchor: # 參數(shù)dataset代表的是訓(xùn)練集,hyp['anchor_t']是從配置文件hpy.scratch.yaml讀取的超參數(shù) anchor_t:4.0 # 當(dāng)配置文件中的anchor計(jì)算bpr(best possible recall)小于0.98時(shí)才會(huì)重新計(jì)算anchor。 # best possible recall最大值1,如果bpr小于0.98,程序會(huì)根據(jù)數(shù)據(jù)集的label自動(dòng)學(xué)習(xí)anchor的尺寸 check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # 半進(jìn)度 model.half().float() # pre-reduce anchor precision callbacks.run('on_pretrain_routine_end') # #################################################### 7. 訓(xùn)練 ############################################### # DDP mode # DDP:多機(jī)多卡 if cuda and RANK != -1: model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) # Model attributes nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) hyp['box'] *= 3 / nl # scale to layers hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers # 標(biāo)簽平滑 hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model # 從訓(xùn)練樣本標(biāo)簽得到類(lèi)別權(quán)重(和類(lèi)別中的目標(biāo)數(shù)即類(lèi)別頻率成反比) model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() # # 獲取熱身迭代的次數(shù)iterations: 3 nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training last_opt_step = -1 # # 初始化maps(每個(gè)類(lèi)別的map)和results maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) # 設(shè)置學(xué)習(xí)率衰減所進(jìn)行到的輪次,即使打斷訓(xùn)練,使用resume接著訓(xùn)練也能正常銜接之前的訓(xùn)練進(jìn)行學(xué)習(xí)率衰減 scheduler.last_epoch = start_epoch - 1 # do not move # 設(shè)置amp混合精度訓(xùn)練 scaler = amp.GradScaler(enabled=cuda) # 早停止,不更新結(jié)束訓(xùn)練 stopper = EarlyStopping(patience=opt.patience) # 初始化損失函數(shù) compute_loss = ComputeLoss(model) # init loss class # 打印信息 LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' f"Logging results to {colorstr('bold', save_dir)}\n" f'Starting training for {epochs} epochs...') # 開(kāi)始走起訓(xùn)練 for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional, single-GPU only) # opt.image_weights if opt.image_weights: """ 如果設(shè)置進(jìn)行圖片采樣策略, 則根據(jù)前面初始化的圖片采樣權(quán)重model.class_weights以及maps配合每張圖片包含的類(lèi)別數(shù) 通過(guò)random.choices生成圖片索引indices從而進(jìn)行采樣 """ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Update mosaic border (optional) # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(3, device=device) # mean losses if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size')) if RANK in [-1, 0]: # 進(jìn)度條顯示 pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar # 梯度清零 optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 """ 熱身訓(xùn)練(前nw次迭代) 在前nw次迭代中, 根據(jù)以下方式選取accumulate和學(xué)習(xí)率 """ # Warmup if ni <= nw: xi = [0, nw] # x interp # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): """ bias的學(xué)習(xí)率從0.1下降到基準(zhǔn)學(xué)習(xí)率lr*lf(epoch), 其他的參數(shù)學(xué)習(xí)率從0增加到lr*lf(epoch). lf為上面設(shè)置的余弦退火的衰減函數(shù) 動(dòng)量momentum也從0.9慢慢變到hyp['momentum'](default=0.937) """ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: """ Multi-scale 設(shè)置多尺度訓(xùn)練,從imgsz * 0.5, imgsz * 1.5 + gs隨機(jī)選取尺寸 """ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward / 前向傳播 with amp.autocast(enabled=cuda): pred = model(imgs) # forward # # 計(jì)算損失,包括分類(lèi)損失,objectness損失,框的回歸損失 # loss為總損失值,loss_items為一個(gè)元組,包含分類(lèi)損失,objectness損失,框的回歸損失和總損失 loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: # 平均不同gpu之間的梯度 loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize # 模型反向傳播accumulate次之后再根據(jù)累積的梯度更新一次參數(shù) if ni - last_opt_step >= accumulate: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Log if RANK in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % ( f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn) if callbacks.stop_training: return # end batch ------------------------------------------------------------------------------------------------ # Scheduler 進(jìn)行學(xué)習(xí)率衰減 lr = [x['lr'] for x in optimizer.param_groups] # for loggers scheduler.step() if RANK in [-1, 0]: # mAP callbacks.run('on_train_epoch_end', epoch=epoch) # 將model中的屬性賦值給ema ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) # 判斷當(dāng)前的epoch是否是最后一輪 final_epoch = (epoch + 1 == epochs) or stopper.possible_stop # notest: 是否只測(cè)試最后一輪 True: 只測(cè)試最后一輪 False: 每輪訓(xùn)練完都測(cè)試mAP if not noval or final_epoch: # Calculate mAP """ 測(cè)試使用的是ema(指數(shù)移動(dòng)平均 對(duì)模型的參數(shù)做平均)的模型 results: [1] Precision 所有類(lèi)別的平均precision(最大f1時(shí)) [1] Recall 所有類(lèi)別的平均recall [1] map@0.5 所有類(lèi)別的平均mAP@0.5 [1] map@0.5:0.95 所有類(lèi)別的平均mAP@0.5:0.95 [1] box_loss 驗(yàn)證集回歸損失, obj_loss 驗(yàn)證集置信度損失, cls_loss 驗(yàn)證集分類(lèi)損失 maps: [80] 所有類(lèi)別的mAP@0.5:0.95 """ results, maps, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=ema.ema, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, plots=False, callbacks=callbacks, compute_loss=compute_loss) # Update best mAP # Update best mAP 這里的best mAP其實(shí)是[P, R, mAP@.5, mAP@.5-.95]的一個(gè)加權(quán)值 # fi: [P, R, mAP@.5, mAP@.5-.95]的一個(gè)加權(quán)值 = 0.1*mAP@.5 + 0.9*mAP@.5-.95 fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] if fi > best_fitness: best_fitness = fi log_vals = list(mloss) + list(results) + lr callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) # Save model """ 保存帶checkpoint的模型用于inference或resuming training 保存模型, 還保存了epoch, results, optimizer等信息 optimizer將不會(huì)在最后一輪完成后保存 model保存的是EMA的模型 """ if (not nosave) or (final_epoch and not evolve): # if save ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None, 'date': datetime.now().isoformat()} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0): torch.save(ckpt, w / f'epoch{epoch}.pt') del ckpt callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) # Stop Single-GPU if RANK == -1 and stopper(epoch=epoch, fitness=fi): break # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576 # stop = stopper(epoch=epoch, fitness=fi) # if RANK == 0: # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks # Stop DPP # with torch_distributed_zero_first(RANK): # if stop: # break # must break all DDP ranks # end epoch ---------------------------------------------------------------------------------------------------- # end training -------------------------------------------------------------------------------------------------- ############################################### 8. 打印訓(xùn)練信息 ########################################## if RANK in [-1, 0]: LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') for f in last, best: if f.exists(): # 模型訓(xùn)練完后, strip_optimizer函數(shù)將optimizer從ckpt中刪除 # 并對(duì)模型進(jìn)行model.half() 將Float32->Float16 這樣可以減少模型大小, 提高inference速度 strip_optimizer(f) # strip optimizers if f is best: LOGGER.info(f'\nValidating {f}...') results, _, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=attempt_load(f, device).half(), iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65 single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=is_coco, verbose=True, plots=True, callbacks=callbacks, compute_loss=compute_loss) # val best model with plots if is_coco: callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) # 回調(diào)函數(shù) callbacks.run('on_train_end', last, best, plots, epoch, results) LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") # 釋放顯存 torch.cuda.empty_cache() return results def parse_opt(known=False): parser = argparse.ArgumentParser() # weights 權(quán)重的路徑./weights/yolov5s.pt.... parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path') # cfg 配置文件(網(wǎng)絡(luò)結(jié)構(gòu)) anchor/backbone/numclasses/head,該文件需要自己生成 parser.add_argument('--cfg', type=str, default='', help='model.yaml path') # data 數(shù)據(jù)集配置文件(路徑) train/val/label/, 該文件需要自己生成 parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') # hpy超參數(shù)設(shè)置文件(lr/sgd/mixup) parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') # epochs 訓(xùn)練輪次 parser.add_argument('--epochs', type=int, default=300) # batchsize 訓(xùn)練批次 parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') # imagesize 設(shè)置圖片大小 parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') # rect 是否采用矩形訓(xùn)練,默認(rèn)為False parser.add_argument('--rect', action='store_true', help='rectangular training') # resume 是否接著上次的訓(xùn)練結(jié)果,繼續(xù)訓(xùn)練 parser.add_argument('--resume', nargs='?', const=True, default=True, help='resume most recent training') # nosave 保存最好的模型 parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') # noval 最后進(jìn)行測(cè)試 parser.add_argument('--noval', action='store_true', help='only validate final epoch') # noautoanchor 不自動(dòng)調(diào)整anchor, 默認(rèn)False parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') # evolve參數(shù)進(jìn)化 parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') # bucket谷歌優(yōu)盤(pán) parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') # cache 是否提前緩存圖片到內(nèi)存,以加快訓(xùn)練速度,默認(rèn)False parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') # mage-weights 加載的權(quán)重文件 parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') # device 設(shè)備選擇 parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # multi-scale 多測(cè)度訓(xùn)練 parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') # single-cls 數(shù)據(jù)集是否多類(lèi)/默認(rèn)True parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') # optimizer 優(yōu)化器選擇 parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') # sync-bn:是否使用跨卡同步BN,在DDP模式使用 parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') # workers/dataloader的最大worker數(shù)量 parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') # 保存路徑 parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') # 實(shí)驗(yàn)名稱(chēng) parser.add_argument('--name', default='exp', help='save to project/name') # 項(xiàng)目位置是否存在 parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--quad', action='store_true', help='quad dataloader') # cos-lr 余弦學(xué)習(xí)率 parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') # 標(biāo)簽平滑 parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') # 早停止忍耐次數(shù) parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') # 凍結(jié)訓(xùn)練次數(shù) parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') # Weights & Biases arguments # 在線可視化工具,類(lèi)似于tensorboard工具,想了解這款工具可以查看https://zhuanlan.zhihu.com/p/266337608 parser.add_argument('--entity', default=None, help='W&B: Entity') # upload_dataset: 是否上傳dataset到wandb tabel(將數(shù)據(jù)集作為交互式 dsviz表 在瀏覽器中查看、查詢、篩選和分析數(shù)據(jù)集) 默認(rèn)False parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option') # bbox_interval: 設(shè)置界框圖像記錄間隔 Set bounding-box image logging interval for W&B 默認(rèn)-1 opt.epochs // 10 parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval') # 使用數(shù)據(jù)的版本 parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use') # 傳入的基本配置中沒(méi)有的參數(shù)也不會(huì)報(bào)錯(cuò)# parse_args()和parse_known_args() # parse = argparse.ArgumentParser() # parse.add_argument('--s', type=int, default=2, help='flag_int') # parser.parse_args() / parse_args() opt = parser.parse_known_args()[0] if known else parser.parse_args() return opt def main(opt, callbacks=Callbacks()): ############################################### 1. Checks ################################################## if RANK in [-1, 0]: # 輸出所有訓(xùn)練參數(shù) / 參數(shù)以彩色的方式表現(xiàn) print_args(FILE.stem, opt) # 檢查代碼版本是否更新 check_git_status() # 檢查安裝是否都安裝了 requirements.txt, 缺少安裝包安裝。 # 缺少安裝包:建議使用 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt check_requirements(exclude=['thop']) ############################################### 2. Resume ################################################## # 初始化可視化工具wandb,wandb使用教程看https://zhuanlan.zhihu.com/p/266337608 # 斷點(diǎn)訓(xùn)練使用教程可以查看:https://blog.csdn.net/CharmsLUO/article/details/123410081 if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run # isinstance()是否是已經(jīng)知道的類(lèi)型 # 如果resume是True,則通過(guò)get_lastest_run()函數(shù)找到runs為文件夾中最近的權(quán)重文件last.pt ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path # 判斷是否是文件 assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' # # 相關(guān)的opt參數(shù)也要替換成last.pt中的opt參數(shù) safe_load()yaml文件加載數(shù)據(jù) with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f: # argparse.Namespace 可以理解為字典 opt = argparse.Namespace(**yaml.safe_load(f)) # replace opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate # 打印斷點(diǎn)訓(xùn)練信息 LOGGER.info(f'Resuming training from {ckpt}') else: # 不使用斷點(diǎn)訓(xùn)練就在加載輸入的參數(shù) opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' # opt.evolve=False,opt.name='exp' opt.evolve=True,opt.name='evolve' if opt.evolve: if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve opt.project = str(ROOT / 'runs/evolve') opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume # 保存相關(guān)信息 opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # ############################################## 3.DDP mode ############################################### # 選擇設(shè)備cpu/cuda device = select_device(opt.device, batch_size=opt.batch_size) # 多卡訓(xùn)練GPU if LOCAL_RANK != -1: msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' assert not opt.image_weights, f'--image-weights {msg}' assert not opt.evolve, f'--evolve {msg}' assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size' assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' # 根據(jù)編號(hào)選擇設(shè)備 #使用torch.cuda.set_device()可以更方便地將模型和數(shù)據(jù)加載到對(duì)應(yīng)GPU上, 直接定義模型之前加入一行代碼即可 # torch.cuda.set_device(gpu_id) #單卡 # torch.cuda.set_device('cuda:'+str(gpu_ids)) #可指定多卡 torch.cuda.set_device(LOCAL_RANK) device = torch.device('cuda', LOCAL_RANK) # 初始化多進(jìn)程 dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo") ################################################ 4. Train ################################################# # 不設(shè)置evolve直接調(diào)用train訓(xùn)練 if not opt.evolve: train(opt.hyp, opt, device, callbacks) # 分布式訓(xùn)練 WORLD_SIZE=主機(jī)的數(shù)量 # 如果是使用多卡訓(xùn)練, 那么銷(xiāo)毀進(jìn)程組 if WORLD_SIZE > 1 and RANK == 0: LOGGER.info('Destroying process group... ') # 使用多卡訓(xùn)練, 那么銷(xiāo)毀進(jìn)程組 dist.destroy_process_group() # Evolve hyperparameters (optional) # 遺傳凈化算法/一邊訓(xùn)練一遍進(jìn)化 # 了解遺傳算法可以查看我的博客: else: # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) # 超參數(shù)列表(突變范圍 - 最小值 - 最大值) meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr 'box': (1, 0.02, 0.2), # box loss gain 'cls': (1, 0.2, 4.0), # cls loss gain 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight 'iou_t': (0, 0.1, 0.7), # IoU training threshold 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) 'scale': (1, 0.0, 0.9), # image scale (+/- gain) 'shear': (1, 0.0, 10.0), # image shear (+/- deg) 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) 'mosaic': (1, 0.0, 1.0), # image mixup (probability) 'mixup': (1, 0.0, 1.0), # image mixup (probability) 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability) with open(opt.hyp, errors='ignore') as f: # 加載yaml超參數(shù) hyp = yaml.safe_load(f) # load hyps dict if 'anchors' not in hyp: # anchors commented in hyp.yaml hyp['anchors'] = 3 opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices # 保存進(jìn)化的超參數(shù)列表 evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' if opt.bucket: os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists """ 遺傳算法調(diào)參:遵循適者生存、優(yōu)勝劣汰的法則,即尋優(yōu)過(guò)程中保留有用的,去除無(wú)用的。 遺傳算法需要提前設(shè)置4個(gè)參數(shù): 群體大小/進(jìn)化代數(shù)/交叉概率/變異概率 """ # 默認(rèn)選擇進(jìn)化300代 for _ in range(opt.evolve): # generations to evolve if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate # Select parent(s) # 進(jìn)化方式--single / --weight parent = 'single' # parent selection method: 'single' or 'weighted' # 加載evolve.txt文件 x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) # 選取進(jìn)化結(jié)果代數(shù) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations # 根據(jù)resluts計(jì)算hyp權(quán)重 w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) # 根據(jù)不同進(jìn)化方式獲得base hyp if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate # # 獲取突變初始值 mp, s = 0.8, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 ng = len(meta) v = np.ones(ng) # 設(shè)置突變 while all(v == 1): # mutate until a change occurs (prevent duplicates) # 將突變添加到base hyp上 # [i+7]是因?yàn)閤中前7個(gè)數(shù)字為results的指標(biāo)(P,R,mAP,F1,test_loss=(box,obj,cls)),之后才是超參數(shù)hyp v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = float(x[i + 7] * v[i]) # mutate # Constrain to limits # 限制超參再規(guī)定范圍 for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) # lower limit hyp[k] = min(hyp[k], v[2]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits # Train mutation # 訓(xùn)練 使用突變后的參超 測(cè)試其效果 results = train(hyp.copy(), opt, device, callbacks) callbacks = Callbacks() # Write mutation results # Write mutation results # 將結(jié)果寫(xiě)入results 并將對(duì)應(yīng)的hyp寫(xiě)到evolve.txt evolve.txt中每一行為一次進(jìn)化的結(jié)果 # 每行前七個(gè)數(shù)字 (P, R, mAP, F1, test_losses(GIOU, obj, cls)) 之后為hyp # 保存hyp到y(tǒng)aml文件 print_mutation(results, hyp.copy(), save_dir, opt.bucket) # Plot results # 將結(jié)果可視化 / 輸出保存信息 plot_evolve(evolve_csv) LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' f"Results saved to {colorstr('bold', save_dir)}\n" f'Usage example: $ python train.py --hyp {evolve_yaml}') def run(**kwargs): # 執(zhí)行這個(gè)腳本/ 調(diào)用train函數(shù) / 開(kāi)啟訓(xùn)練 # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') opt = parse_opt(True) for k, v in kwargs.items(): # setattr() 賦值屬性,屬性不存在則創(chuàng)建一個(gè)賦值 setattr(opt, k, v) main(opt) return opt if __name__ == "__main__": # 接著上次訓(xùn)練 # python train.py --data ./data/mchar.yaml --cfg yolov5l_mchar.yaml --epochs 80 --batch-size 8 --weights ./runs/train/exp7/weights/last.pt opt = parse_opt() main(opt)
使用教程
下面我把大家能使用到的參數(shù),給大家打個(gè)樣,大家可以一葫蘆畫(huà)瓢,根據(jù)自己的情況設(shè)置這些參數(shù),運(yùn)行代碼如下
python train.py --cfg yolov5l_mchar.yaml --weights ./weights/yolov5s.pt --data ./data/mchar.yaml --epoch 200 --batch-size 8 --rect --noval --evolve 300 --image-weights --multi-scale --optimizer Adam --cos-lr --freeze 3 --bbox_interval 20
總結(jié)
到此這篇關(guān)于yolov5中train.py代碼注釋詳解與使用的文章就介紹到這了,更多相關(guān)yolov5 train.py代碼注釋內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
學(xué)會(huì)用Python實(shí)現(xiàn)滑雪小游戲,再也不用去北海道啦
Python除了極少的事情不能做之外,其他基本上可以說(shuō)全能.,圖形處理、文本處理、數(shù)據(jù)庫(kù)編程、網(wǎng)絡(luò)編程、web編程、黑客編程、爬蟲(chóng)編寫(xiě)、機(jī)器學(xué)習(xí)、人工智能等.接下來(lái)我就教大家做一個(gè)不用去北海道也可以滑雪的小游戲,需要的朋友可以參考下2021-05-05基于python select.select模塊通信的實(shí)例講解
下面小編就為大家?guī)?lái)一篇基于python select.select模塊通信的實(shí)例講解。小編覺(jué)得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧2017-09-09利用Python實(shí)現(xiàn)簡(jiǎn)單的相似圖片搜索的教程
這篇文章主要介紹了利用Python實(shí)現(xiàn)簡(jiǎn)單的相似圖片搜索的教程,文中的示例主要在一個(gè)圖片指紋數(shù)據(jù)庫(kù)中實(shí)現(xiàn),需要的朋友可以參考下2015-04-04Python調(diào)用edge-tts實(shí)現(xiàn)在線文字轉(zhuǎn)語(yǔ)音效果
edge-tts是一個(gè) Python 模塊,允許通過(guò)Python代碼或命令的方式使用 Microsoft Edge 的在線文本轉(zhuǎn)語(yǔ)音服務(wù),這篇文章主要介紹了Python調(diào)用edge-tts實(shí)現(xiàn)在線文字轉(zhuǎn)語(yǔ)音效果,需要的朋友可以參考下2024-03-03使用DataFrame實(shí)現(xiàn)兩表連接方式
這篇文章主要介紹了使用DataFrame實(shí)現(xiàn)兩表連接方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2023-08-08Django-Model數(shù)據(jù)庫(kù)操作(增刪改查、連表結(jié)構(gòu))詳解
這篇文章主要介紹了Django-Model數(shù)據(jù)庫(kù)操作(增刪改查、連表結(jié)構(gòu))詳解,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-07-07Python數(shù)組并集交集補(bǔ)集代碼實(shí)例
這篇文章主要介紹了Python數(shù)組并集交集補(bǔ)集代碼實(shí)例,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-02-02Python?Tkinter?Gui運(yùn)行不卡頓(解決多線程解決界面卡死問(wèn)題)
最近寫(xiě)的Python代碼不知為何,總是執(zhí)行到一半卡住不動(dòng),所以下面這篇文章主要給大家介紹了關(guān)于Python?Tkinter?Gui運(yùn)行不卡頓,解決多線程解決界面卡死問(wèn)題的相關(guān)資料,需要的朋友可以參考下2023-02-02一文帶你詳解Python中sys.executable函數(shù)的作用
sys.executable函數(shù)是用來(lái)獲取當(dāng)前Python解釋器的完整路徑的,本文主要介紹了一文帶你詳解Python中sys.executable函數(shù)的作用,具有一定的參考價(jià)值,感興趣的可以了解一下2024-03-03