如何使用python生成大量數(shù)據(jù)寫入es數(shù)據(jù)庫并查詢操作
前言:
模擬學(xué)生成績信息寫入es數(shù)據(jù)庫,包括姓名、性別、科目、成績。
示例代碼1:【一次性寫入10000*1000條數(shù)據(jù)】 【本人親測耗時5100秒】
from elasticsearch import Elasticsearch from elasticsearch import helpers import random import time es = Elasticsearch(hosts='http://127.0.0.1:9200') # print(es) names = ['劉一', '陳二', '張三', '李四', '王五', '趙六', '孫七', '周八', '吳九', '鄭十'] sexs = ['男', '女'] subjects = ['語文', '數(shù)學(xué)', '英語', '生物', '地理'] grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86] datas = [] start = time.time() # 開始批量寫入es數(shù)據(jù)庫 # 批量寫入數(shù)據(jù) for j in range(1000): print(j) action = [ { "_index": "grade", "_type": "doc", "_id": i, "_source": { "id": i, "name": random.choice(names), "sex": random.choice(sexs), "subject": random.choice(subjects), "grade": random.choice(grades) } } for i in range(10000 * j, 10000 * j + 10000) ] helpers.bulk(es, action) end = time.time() print('花費時間:', end - start)
elasticsearch-head中顯示:
示例代碼2:【一次性寫入10000*5000條數(shù)據(jù)】 【本人親測耗時23000秒】
from elasticsearch import Elasticsearch from elasticsearch import helpers import random import time es = Elasticsearch(hosts='http://127.0.0.1:9200') # print(es) names = ['劉一', '陳二', '張三', '李四', '王五', '趙六', '孫七', '周八', '吳九', '鄭十'] sexs = ['男', '女'] subjects = ['語文', '數(shù)學(xué)', '英語', '生物', '地理'] grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86] datas = [] start = time.time() # 開始批量寫入es數(shù)據(jù)庫 # 批量寫入數(shù)據(jù) for j in range(5000): print(j) action = [ { "_index": "grade3", "_type": "doc", "_id": i, "_source": { "id": i, "name": random.choice(names), "sex": random.choice(sexs), "subject": random.choice(subjects), "grade": random.choice(grades) } } for i in range(10000 * j, 10000 * j + 10000) ] helpers.bulk(es, action) end = time.time() print('花費時間:', end - start)
示例代碼3:【一次性寫入10000*9205條數(shù)據(jù)】 【耗時過長】
from elasticsearch import Elasticsearch from elasticsearch import helpers import random import time es = Elasticsearch(hosts='http://127.0.0.1:9200') names = ['劉一', '陳二', '張三', '李四', '王五', '趙六', '孫七', '周八', '吳九', '鄭十'] sexs = ['男', '女'] subjects = ['語文', '數(shù)學(xué)', '英語', '生物', '地理'] grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86] datas = [] start = time.time() # 開始批量寫入es數(shù)據(jù)庫 # 批量寫入數(shù)據(jù) for j in range(9205): print(j) action = [ { "_index": "grade2", "_type": "doc", "_id": i, "_source": { "id": i, "name": random.choice(names), "sex": random.choice(sexs), "subject": random.choice(subjects), "grade": random.choice(grades) } } for i in range(10000*j, 10000*j+10000) ] helpers.bulk(es, action) end = time.time() print('花費時間:', end - start)
查詢數(shù)據(jù)并計算各種方式的成績總分。
示例代碼4:【一次性獲取所有的數(shù)據(jù),在程序中分別計算所耗的時間】
from elasticsearch import Elasticsearch import time def search_data(es, size=10): query = { "query": { "match_all": {} } } res = es.search(index='grade', body=query, size=size) # print(res) return res if __name__ == '__main__': start = time.time() es = Elasticsearch(hosts='http://192.168.1.1:9200') # print(es) size = 10000 res = search_data(es, size) # print(type(res)) # total = res['hits']['total']['value'] # print(total) all_source = [] for i in range(size): source = res['hits']['hits'][i]['_source'] all_source.append(source) # print(source) # 統(tǒng)計查詢出來的所有學(xué)生的所有課程的所有成績的總成績 start1 = time.time() all_grade = 0 for data in all_source: all_grade += int(data['grade']) print('所有學(xué)生總成績之和:', all_grade) end1 = time.time() print("耗時:", end1 - start1) # 統(tǒng)計查詢出來的每個學(xué)生的所有課程的所有成績的總成績 start2 = time.time() names1 = [] all_name_grade = {} for data in all_source: if data['name'] in names1: all_name_grade[data['name']] += data['grade'] else: names1.append(data['name']) all_name_grade[data['name']] = data['grade'] print(all_name_grade) end2 = time.time() print("耗時:", end2 - start2) # 統(tǒng)計查詢出來的每個學(xué)生的每門課程的所有成績的總成績 start3 = time.time() names2 = [] subjects = [] all_name_all_subject_grade = {} for data in all_source: if data['name'] in names2: if all_name_all_subject_grade[data['name']].get(data['subject']): all_name_all_subject_grade[data['name']][data['subject']] += data['grade'] else: all_name_all_subject_grade[data['name']][data['subject']] = data['grade'] else: names2.append(data['name']) all_name_all_subject_grade[data['name']] = {} all_name_all_subject_grade[data['name']][data['subject']] = data['grade'] print(all_name_all_subject_grade) end3 = time.time() print("耗時:", end3 - start3) end = time.time() print('總耗時:', end - start)
運行結(jié)果:
在示例代碼4中當把size由10000改為 2000000時,運行效果如下所示:
在項目中一般不用上述代碼4中所統(tǒng)計成績的方法,面對大量的數(shù)據(jù)是比較耗時的,要使用es中的聚合查詢。計算數(shù)據(jù)中所有成績之和。
示例代碼5:【使用普通計算方法和聚類方法做對比驗證】
from elasticsearch import Elasticsearch import time def search_data(es, size=10): query = { "query": { "match_all": {} } } res = es.search(index='grade', body=query, size=size) # print(res) return res def search_data2(es, size=10): query = { "aggs": { "all_grade": { "terms": { "field": "grade", "size": 1000 } } } } res = es.search(index='grade', body=query, size=size) # print(res) return res if __name__ == '__main__': start = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') size = 2000000 res = search_data(es, size) all_source = [] for i in range(size): source = res['hits']['hits'][i]['_source'] all_source.append(source) # print(source) # 統(tǒng)計查詢出來的所有學(xué)生的所有課程的所有成績的總成績 start1 = time.time() all_grade = 0 for data in all_source: all_grade += int(data['grade']) print('200萬數(shù)據(jù)所有學(xué)生總成績之和:', all_grade) end1 = time.time() print("耗時:", end1 - start1) end = time.time() print('200萬數(shù)據(jù)總耗時:', end - start) # 聚合操作 start_aggs = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') # size = 2000000 size = 0 res = search_data2(es, size) # print(res) aggs = res['aggregations']['all_grade']['buckets'] print(aggs) sum = 0 for agg in aggs: sum += (agg['key'] * agg['doc_count']) print('1000萬數(shù)據(jù)總成績之和:', sum) end_aggs = time.time() print('1000萬數(shù)據(jù)總耗時:', end_aggs - start_aggs)
運行結(jié)果:
計算數(shù)據(jù)中每個同學(xué)的各科總成績之和。
示例代碼6: 【子聚合】【先分組,再計算】
from elasticsearch import Elasticsearch import time def search_data(es, size=10): query = { "query": { "match_all": {} } } res = es.search(index='grade', body=query, size=size) # print(res) return res def search_data2(es): query = { "size": 0, "aggs": { "all_names": { "terms": { "field": "name.keyword", "size": 10 }, "aggs": { "total_grade": { "sum": { "field": "grade" } } } } } } res = es.search(index='grade', body=query) # print(res) return res if __name__ == '__main__': start = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') size = 2000000 res = search_data(es, size) all_source = [] for i in range(size): source = res['hits']['hits'][i]['_source'] all_source.append(source) # print(source) # 統(tǒng)計查詢出來的每個學(xué)生的所有課程的所有成績的總成績 start2 = time.time() names1 = [] all_name_grade = {} for data in all_source: if data['name'] in names1: all_name_grade[data['name']] += data['grade'] else: names1.append(data['name']) all_name_grade[data['name']] = data['grade'] print(all_name_grade) end2 = time.time() print("200萬數(shù)據(jù)耗時:", end2 - start2) end = time.time() print('200萬數(shù)據(jù)總耗時:', end - start) # 聚合操作 start_aggs = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') res = search_data2(es) # print(res) aggs = res['aggregations']['all_names']['buckets'] # print(aggs) dic = {} for agg in aggs: dic[agg['key']] = agg['total_grade']['value'] print('1000萬數(shù)據(jù):', dic) end_aggs = time.time() print('1000萬數(shù)據(jù)總耗時:', end_aggs - start_aggs)
運行結(jié)果:
計算數(shù)據(jù)中每個同學(xué)的每科成績之和。
示例代碼7:
from elasticsearch import Elasticsearch import time def search_data(es, size=10): query = { "query": { "match_all": {} } } res = es.search(index='grade', body=query, size=size) # print(res) return res def search_data2(es): query = { "size": 0, "aggs": { "all_names": { "terms": { "field": "name.keyword", "size": 10 }, "aggs": { "all_subjects": { "terms": { "field": "subject.keyword", "size": 5 }, "aggs": { "total_grade": { "sum": { "field": "grade" } } } } } } } } res = es.search(index='grade', body=query) # print(res) return res if __name__ == '__main__': start = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') size = 2000000 res = search_data(es, size) all_source = [] for i in range(size): source = res['hits']['hits'][i]['_source'] all_source.append(source) # print(source) # 統(tǒng)計查詢出來的每個學(xué)生的每門課程的所有成績的總成績 start3 = time.time() names2 = [] subjects = [] all_name_all_subject_grade = {} for data in all_source: if data['name'] in names2: if all_name_all_subject_grade[data['name']].get(data['subject']): all_name_all_subject_grade[data['name']][data['subject']] += data['grade'] else: all_name_all_subject_grade[data['name']][data['subject']] = data['grade'] else: names2.append(data['name']) all_name_all_subject_grade[data['name']] = {} all_name_all_subject_grade[data['name']][data['subject']] = data['grade'] print('200萬數(shù)據(jù):', all_name_all_subject_grade) end3 = time.time() print("耗時:", end3 - start3) end = time.time() print('200萬數(shù)據(jù)總耗時:', end - start) # 聚合操作 start_aggs = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') res = search_data2(es) # print(res) aggs = res['aggregations']['all_names']['buckets'] # print(aggs) dic = {} for agg in aggs: dic[agg['key']] = {} for sub in agg['all_subjects']['buckets']: dic[agg['key']][sub['key']] = sub['total_grade']['value'] print('1000萬數(shù)據(jù):', dic) end_aggs = time.time() print('1000萬數(shù)據(jù)總耗時:', end_aggs - start_aggs)
運行結(jié)果:
在上面查詢計算示例代碼中,當使用含有1000萬數(shù)據(jù)的索引grade時,普通方法查詢計算是比較耗時的,使用聚合查詢能夠大大節(jié)約大量時間。當面對9205萬數(shù)據(jù)的索引grade2時,這時使用普通計算方法所消耗的時間太大了,在線上開發(fā)環(huán)境中是不可用的,所以必須使用聚合方法來計算。
示例代碼8:
from elasticsearch import Elasticsearch import time def search_data(es): query = { "size": 0, "aggs": { "all_names": { "terms": { "field": "name.keyword", "size": 10 }, "aggs": { "all_subjects": { "terms": { "field": "subject.keyword", "size": 5 }, "aggs": { "total_grade": { "sum": { "field": "grade" } } } } } } } } res = es.search(index='grade2', body=query) # print(res) return res if __name__ == '__main__': # 聚合操作 start_aggs = time.time() es = Elasticsearch(hosts='http://127.0.0.1:9200') res = search_data(es) # print(res) aggs = res['aggregations']['all_names']['buckets'] # print(aggs) dic = {} for agg in aggs: dic[agg['key']] = {} for sub in agg['all_subjects']['buckets']: dic[agg['key']][sub['key']] = sub['total_grade']['value'] print('9205萬數(shù)據(jù):', dic) end_aggs = time.time() print('9205萬數(shù)據(jù)總耗時:', end_aggs - start_aggs)
運行結(jié)果:
注意:寫查詢語句時建議使用kibana去寫,然后復(fù)制查詢語句到代碼中,kibana會提示查詢語句。
到此這篇關(guān)于如何使用python生成大量數(shù)據(jù)寫入es數(shù)據(jù)庫并查詢操作的文章就介紹到這了,更多相關(guān)python es 內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
快速排序的算法思想及Python版快速排序的實現(xiàn)示例
快速排序算法來源于分治法的思想策略,這里我們將來為大家簡單解析一下快速排序的算法思想及Python版快速排序的實現(xiàn)示例:2016-07-07深入淺析Python中l(wèi)ist的復(fù)制及深拷貝與淺拷貝
這篇文章主要介紹了Python中l(wèi)ist的復(fù)制及深拷貝與淺拷貝及區(qū)別解析 ,需要的朋友可以參考下2018-09-09