Python+pytorch實現(xiàn)天氣識別
一、前期工作
環(huán)境:python3.6,1080ti,pytorch1.10(實驗室服務(wù)器的環(huán)境)
1.設(shè)置GPU或者cpu
import torch import torch.nn as nn import matplotlib.pyplot as plt import torchvision device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device
2.導(dǎo)入數(shù)據(jù)
import os,PIL,random,pathlib data_dir = 'weather_photos/' data_dir = pathlib.Path(data_dir) print(data_dir) data_paths = list(data_dir.glob('*')) print(data_paths) classeNames = [str(path).split("/")[1] for path in data_paths] classeNames
二、數(shù)據(jù)預(yù)處理
數(shù)據(jù)格式設(shè)置
total_datadir = 'weather_photos/' # 關(guān)于transforms.Compose的更多介紹可以參考:https://blog.csdn.net/qq_38251616/article/details/124878863 train_transforms = transforms.Compose([ transforms.Resize([224, 224]), # 將輸入圖片resize成統(tǒng)一尺寸 transforms.ToTensor(), # 將PIL Image或numpy.ndarray轉(zhuǎn)換為tensor,并歸一化到[0,1]之間 transforms.Normalize( # 標(biāo)準(zhǔn)化處理-->轉(zhuǎn)換為標(biāo)準(zhǔn)正太分布(高斯分布),使模型更容易收斂 mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]與std=[0.229,0.224,0.225] 從數(shù)據(jù)集中隨機抽樣計算得到的。 ]) total_data = datasets.ImageFolder(total_datadir,transform=train_transforms) total_data
數(shù)據(jù)集劃分
train_size = int(0.8 * len(total_data)) test_size = len(total_data) - train_size train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size]) train_dataset, test_dataset
設(shè)置dataset
batch_size = 32 train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=1) test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=1)
檢查數(shù)據(jù)格式
for X, y in test_dl: print("Shape of X [N, C, H, W]: ", X.shape) print("Shape of y: ", y.shape, y.dtype) break
三、搭建網(wǎng)絡(luò)
import torch from torch import nn from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential,ReLU num_classes = 4 class Model(nn.Module): def __init__(self): super(Model,self).__init__() # 卷積層 self.layers = Sequential( # 第一層 nn.Conv2d(3, 24, kernel_size=5), nn.BatchNorm2d(24), nn.ReLU(), # 第二層 nn.Conv2d(24,64 , kernel_size=5), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2,2), nn.Conv2d(64, 128, kernel_size=5), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128, 24, kernel_size=5), nn.BatchNorm2d(24), nn.ReLU(), nn.MaxPool2d(2,2), nn.Flatten(), nn.Linear(24*50*50, 516,bias=True), nn.ReLU(), nn.Dropout(0.5), nn.Linear(516, 215,bias=True), nn.ReLU(), nn.Dropout(0.5), nn.Linear(215, num_classes,bias=True), ) def forward(self, x): x = self.layers(x) return x device = "cuda" if torch.cuda.is_available() else "cpu" print("Using {} device".format(device)) model = Model().to(device) model
打印網(wǎng)絡(luò)結(jié)構(gòu)
四、訓(xùn)練模型
1.設(shè)置學(xué)習(xí)率
loss_fn = nn.CrossEntropyLoss() # 創(chuàng)建損失函數(shù) learn_rate = 1e-3 # 學(xué)習(xí)率 opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
2.模型訓(xùn)練
訓(xùn)練函數(shù)
# 訓(xùn)練循環(huán) def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) # 訓(xùn)練集的大小,一共60000張圖片 num_batches = len(dataloader) # 批次數(shù)目,1875(60000/32) train_loss, train_acc = 0, 0 # 初始化訓(xùn)練損失和正確率 for X, y in dataloader: # 獲取圖片及其標(biāo)簽 X, y = X.to(device), y.to(device) # 計算預(yù)測誤差 pred = model(X) # 網(wǎng)絡(luò)輸出 loss = loss_fn(pred, y) # 計算網(wǎng)絡(luò)輸出和真實值之間的差距,targets為真實值,計算二者差值即為損失 # 反向傳播 optimizer.zero_grad() # grad屬性歸零 loss.backward() # 反向傳播 optimizer.step() # 每一步自動更新 # 記錄acc與loss train_acc += (pred.argmax(1) == y).type(torch.float).sum().item() train_loss += loss.item() train_acc /= size train_loss /= num_batches return train_acc, train_loss
測試函數(shù)
def test (dataloader, model, loss_fn): size = len(dataloader.dataset) # 測試集的大小,一共10000張圖片 num_batches = len(dataloader) # 批次數(shù)目,313(10000/32=312.5,向上取整) test_loss, test_acc = 0, 0 # 當(dāng)不進(jìn)行訓(xùn)練時,停止梯度更新,節(jié)省計算內(nèi)存消耗 with torch.no_grad(): for imgs, target in dataloader: imgs, target = imgs.to(device), target.to(device) # 計算loss target_pred = model(imgs) loss = loss_fn(target_pred, target) test_loss += loss.item() test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item() test_acc /= size test_loss /= num_batches return test_acc, test_loss
具體訓(xùn)練代碼
epochs = 30 train_loss = [] train_acc = [] test_loss = [] test_acc = [] for epoch in range(epochs): model.train() epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt) model.eval() epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn) train_acc.append(epoch_train_acc) train_loss.append(epoch_train_loss) test_acc.append(epoch_test_acc) test_loss.append(epoch_test_loss) template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}') print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss)) print('Done')
五、模型評估
1.Loss和Accuracy圖
import matplotlib.pyplot as plt #隱藏警告 import warnings warnings.filterwarnings("ignore") #忽略警告信息 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用來正常顯示中文標(biāo)簽 plt.rcParams['axes.unicode_minus'] = False # 用來正常顯示負(fù)號 plt.rcParams['figure.dpi'] = 100 #分辨率 epochs_range = range(epochs) plt.figure(figsize=(12, 3)) plt.subplot(1, 2, 1) plt.plot(epochs_range, train_acc, label='Training Accuracy') plt.plot(epochs_range, test_acc, label='Test Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, train_loss, label='Training Loss') plt.plot(epochs_range, test_loss, label='Test Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()
2.對結(jié)果進(jìn)行預(yù)測
import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt img_path = "weather_photos/cloudy/cloudy1.jpg" classes = ['cloudy', 'rain', 'shine', 'sunrise'] data_transform = transforms.Compose([ transforms.Resize([224, 224]), # 將輸入圖片resize成統(tǒng)一尺寸 transforms.ToTensor(), # 將PIL Image或numpy.ndarray轉(zhuǎn)換為tensor,并歸一化到[0,1]之間 transforms.Normalize( # 標(biāo)準(zhǔn)化處理-->轉(zhuǎn)換為標(biāo)準(zhǔn)正太分布(高斯分布),使模型更容易收斂 mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]與std=[0.229,0.224,0.225] 從數(shù)據(jù)集中隨機抽樣計算得到的。 ]) def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print(classes[predict_cla]) plt.show() if __name__ == '__main__': main()
預(yù)測結(jié)果如下:
3.總結(jié)
1.本次能主要對以下函數(shù)進(jìn)行了學(xué)習(xí)
transforms.Compose | 針對數(shù)據(jù)轉(zhuǎn)換,例如尺寸,類型 |
datasets.ImageFolder | 結(jié)合上面這個對某文件夾下數(shù)據(jù)處理 |
torch.utils.data.DataLoader | 設(shè)置dataset |
以上就是Python+pytorch實現(xiàn)天氣識別的詳細(xì)內(nèi)容,更多關(guān)于Python pytorch天氣識別的資料請關(guān)注腳本之家其它相關(guān)文章!
- python機器學(xué)習(xí)pytorch?張量基礎(chǔ)教程
- python機器學(xué)習(xí)pytorch自定義數(shù)據(jù)加載器
- Python+Pytorch實戰(zhàn)之彩色圖片識別
- Python使用pytorch動手實現(xiàn)LSTM模塊
- python神經(jīng)網(wǎng)絡(luò)pytorch中BN運算操作自實現(xiàn)
- python神經(jīng)網(wǎng)絡(luò)Pytorch中Tensorboard函數(shù)使用
- python神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)利用PyTorch進(jìn)行回歸運算
- Pytorch相關(guān)知識介紹與應(yīng)用
相關(guān)文章
python中的selenium安裝的步驟(瀏覽器自動化測試框架)
這篇文章主要介紹了python中的selenium安裝的步驟,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-03-03Python 注解方式實現(xiàn)緩存數(shù)據(jù)詳解
這篇文章主要介紹了Python 注解方式實現(xiàn)緩存數(shù),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下2021-10-10使用Python?Socket實現(xiàn)搭建HTTP協(xié)議
網(wǎng)絡(luò)編程中,了解底層的通信機制是極其重要的,本文將帶領(lǐng)大家深入探索如何使用Python的socket庫來實現(xiàn)一個簡單的HTTP協(xié)議,感興趣的可以了解下2024-02-02python目標(biāo)檢測SSD算法訓(xùn)練部分源碼詳解
這篇文章主要為大家介紹了python目標(biāo)檢測SSD算法訓(xùn)練部分源碼詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-05-05Django項目使用ckeditor詳解(不使用admin)
今天小編就為大家分享一篇Django項目使用ckeditor詳解(不使用admin),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-12-12Python PaddleNLP實現(xiàn)自動生成虎年藏頭詩
這篇文章主要介紹了利用Python PaddleNLP實現(xiàn)自動生成虎年藏頭詩功能,文中的示例代碼講解詳細(xì),感興趣的同學(xué)可以跟隨小編一起試一試2022-01-01