利用Pytorch實現(xiàn)獲取特征圖的方法詳解
簡單加載官方預(yù)訓(xùn)練模型
torchvision.models預(yù)定義了很多公開的模型結(jié)構(gòu)
如果pretrained參數(shù)設(shè)置為False,那么僅僅設(shè)定模型結(jié)構(gòu);如果設(shè)置為True,那么會啟動一個下載流程,下載預(yù)訓(xùn)練參數(shù)
如果只想調(diào)用模型,不想訓(xùn)練,那么設(shè)置model.eval()和model.requires_grad_(False)
想查看模型參數(shù)可以使用modules和named_modules,其中named_modules是一個長度為2的tuple,第一個變量是name,第二個變量是module本身。
# -*- coding: utf-8 -*- from torch import nn from torchvision import models # load model. If pretrained is True, there will be a downloading process model = models.vgg19(pretrained=True) model.eval() model.requires_grad_(False) # get model component features = model.features modules = features.modules() named_modules = features.named_modules() # print modules for module in modules: if isinstance(module, nn.Conv2d): weight = module.weight bias = module.bias print(module, weight.shape, bias.shape, weight.requires_grad, bias.requires_grad) elif isinstance(module, nn.ReLU): print(module) print() for named_module in named_modules: name = named_module[0] module = named_module[1] if isinstance(module, nn.Conv2d): weight = module.weight bias = module.bias print(name, module, weight.shape, bias.shape, weight.requires_grad, bias.requires_grad) elif isinstance(module, nn.ReLU): print(name, module)
圖片預(yù)處理
使用opencv和pil讀圖都可以使用transforms.ToTensor()把原本[H, W, 3]的數(shù)據(jù)轉(zhuǎn)成[3, H, W]的tensor。但opencv要注意把數(shù)據(jù)改成RGB順序。
vgg系列模型需要做normalization,建議配合torchvision.transforms來實現(xiàn)。
mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].
參考:https://pytorch.org/hub/pytorch_vision_vgg/
# -*- coding: utf-8 -*- from PIL import Image import cv2 import torch from torchvision import transforms # transforms for preprocess preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # load image using cv2 image_cv2 = cv2.imread('lena_std.bmp') image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB) image_cv2 = preprocess(image_cv2) # load image using pil image_pil = Image.open('lena_std.bmp') image_pil = preprocess(image_pil) # check whether image_cv2 and image_pil are same print(torch.all(image_cv2 == image_pil)) print(image_cv2.shape, image_pil.shape)
提取單個特征圖
如果只提取單層特征圖,可以把模型截斷,以節(jié)省算力和顯存消耗。
下面索引之所以有+1是因為pytorch預(yù)訓(xùn)練模型里面第一個索引的module總是完整模塊結(jié)構(gòu),第二個才開始子模塊。
# -*- coding: utf-8 -*- from PIL import Image from torchvision import models from torchvision import transforms # load model. If pretrained is True, there will be a downloading process model = models.vgg19(pretrained=True) model = model.features[:16 + 1] # 16 = conv3_4 model.eval() model.requires_grad_(False) model.to('cuda') print(model) # load and preprocess image preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), transforms.Resize(size=(224, 224)) ]) image = Image.open('lena_std.bmp') image = preprocess(image) inputs = image.unsqueeze(0) # add batch dimension inputs = inputs.cuda() # forward output = model(inputs) print(output.shape)
提取多個特征圖
第一種方式:逐層運行model,如果碰到了需要保存的feature map就存下來。
第二種方式:使用register_forward_hook,使用這種方式需要用一個類把feature map以成員變量的形式緩存下來。
兩種方式的運行效率差不多
第一種方式簡單直觀,但是只能處理類似VGG這種沒有跨層連接的網(wǎng)絡(luò);第二種方式更加通用。
# -*- coding: utf-8 -*- from PIL import Image import torch from torchvision import models from torchvision import transforms # load model. If pretrained is True, there will be a downloading process model = models.vgg19(pretrained=True) model = model.features[:16 + 1] # 16 = conv3_4 model.eval() model.requires_grad_(False) model.to('cuda') # check module name for named_module in model.named_modules(): name = named_module[0] module = named_module[1] print('-------- %s --------' % name) print(module) print() # load and preprocess image preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), transforms.Resize(size=(224, 224)) ]) image = Image.open('lena_std.bmp') image = preprocess(image) inputs = image.unsqueeze(0) # add batch dimension inputs = inputs.cuda() # forward - 1 layers = [2, 7, 8, 9, 16] layers = sorted(set(layers)) feature_maps = {} feature = inputs for i in range(max(layers) + 1): feature = model[i](feature) if i in layers: feature_maps[i] = feature for key in feature_maps: print(key, feature_maps.get(key).shape) # forward - 2 class FeatureHook: def __init__(self, module): self.inputs = None self.output = None self.hook = module.register_forward_hook(self.get_features) def get_features(self, module, inputs, output): self.inputs = inputs self.output = output layer_names = ['2', '7', '8', '9', '16'] hook_modules = [] for named_module in model.named_modules(): name = named_module[0] module = named_module[1] if name in layer_names: hook_modules.append(module) hooks = [FeatureHook(module) for module in hook_modules] output = model(inputs) features = [hook.output for hook in hooks] for feature in features: print(feature.shape) # check correctness for i, layer in enumerate(layers): feature1 = feature_maps.get(layer) feature2 = features[i] print(torch.all(feature1 == feature2))
使用第二種方式(register_forward_hook),resnet特征圖也可以順利拿到。
而由于resnet的model已經(jīng)不可以用model[i]的形式索引,所以無法使用第一種方式。
# -*- coding: utf-8 -*- from PIL import Image from torchvision import models from torchvision import transforms # load model. If pretrained is True, there will be a downloading process model = models.resnet18(pretrained=True) model.eval() model.requires_grad_(False) model.to('cuda') # check module name for named_module in model.named_modules(): name = named_module[0] module = named_module[1] print('-------- %s --------' % name) print(module) print() # load and preprocess image preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), transforms.Resize(size=(224, 224)) ]) image = Image.open('lena_std.bmp') image = preprocess(image) inputs = image.unsqueeze(0) # add batch dimension inputs = inputs.cuda() class FeatureHook: def __init__(self, module): self.inputs = None self.output = None self.hook = module.register_forward_hook(self.get_features) def get_features(self, module, inputs, output): self.inputs = inputs self.output = output layer_names = [ 'conv1', 'layer1.0.relu', 'layer2.0.conv1' ] hook_modules = [] for named_module in model.named_modules(): name = named_module[0] module = named_module[1] if name in layer_names: hook_modules.append(module) hooks = [FeatureHook(module) for module in hook_modules] output = model(inputs) features = [hook.output for hook in hooks] for feature in features: print(feature.shape)
問題來了,resnet這種類型的網(wǎng)絡(luò)結(jié)構(gòu)怎么截斷?
使用如下命令就可以,print查看需要截斷到哪里,然后用nn.Sequential重組即可。
需注意重組后網(wǎng)絡(luò)的module_name會發(fā)生變化。
print(list(model.children()) model = torch.nn.Sequential(*list(model.children())[:6])
以上就是利用Pytorch實現(xiàn)獲取特征圖的方法詳解的詳細內(nèi)容,更多關(guān)于Pytorch獲取特征圖的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
讓python json encode datetime類型
python2.6+ 自帶的json模塊,不支持datetime的json encode,每次都需要手動轉(zhuǎn)為字符串,很累人,我們可以自己封裝一個簡單的方法處理此問題。2010-12-12Python多進程multiprocessing、進程池用法實例分析
這篇文章主要介紹了Python多進程multiprocessing、進程池用法,結(jié)合實例形式分析了Python多進程multiprocessing、進程池相關(guān)概念、原理、用法及操作注意事項,需要的朋友可以參考下2020-03-03