Python OpenCV實(shí)現(xiàn)基于模板的圖像拼接
之前基于特征點(diǎn)的圖像拼接如果是多張圖,每次計(jì)算變換矩陣,都有誤差,最后可以圖像拼完就變形很大,基于模板的方法可以很好的解決這一問題。


import cv2
import numpy as np
def matchStitch(imageLeft, imageRight):
ImageLeft_gray = cv2.cvtColor(imageLeft,cv2.COLOR_BGR2GRAY)
ImageRight_gray = cv2.cvtColor(imageRight,cv2.COLOR_BGR2GRAY)
# cv2.imshow("gray", ImageLeft_gray)
# cv2.waitKey()
# 獲取圖像長(zhǎng)寬
height_Left, width_left = ImageLeft_gray.shape[:2]
height_Right, width_Right = ImageRight_gray.shape[:2]
# 模板區(qū)域
left_width_begin = int(3*width_left/4)
left_height_begin = 0
template_left = imageLeft[left_height_begin:int(height_Left/2), left_width_begin: width_left]
drawLeftRect = imageLeft.copy()
cv2.rectangle(drawLeftRect, (left_width_begin, left_height_begin), (width_left, int(height_Left/2) ), (0, 0, 255), 1)
cv2.imshow("template_left", drawLeftRect)
# cv2.waitKey()
# 右邊匹配區(qū)域
match_right = imageRight[0:height_Right, 0: int(2*width_Right/3)]
# cv2.imshow("match_right", match_right)
# cv2.waitKey()
# 執(zhí)行模板匹配,采用的匹配方式cv2.TM_CCOEFF_NORMED
matchResult = cv2.matchTemplate(match_right, template_left, cv2.TM_CCOEFF_NORMED)
# 歸一化處理
cv2.normalize( matchResult, matchResult, 0, 1, cv2.NORM_MINMAX, -1 )
# 尋找矩陣(一維數(shù)組當(dāng)做向量,用Mat定義)中的最大值和最小值的匹配結(jié)果及其位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(matchResult)
# 設(shè)置最終圖片大小
dstStitch = np.zeros((height_Left, width_Right + left_width_begin - max_loc[0] , 3), imageLeft.dtype)
# imageLeft.dtype
# print(imageLeft.dtype)
height_dst, width_dst = dstStitch.shape[:2]
# copy left image
dstStitch[0:height_Left, 0:width_left] = imageLeft.copy()
# cv2.imshow("src", dstStitch)
# 匹配右圖的高要能和目標(biāo)區(qū)域一樣
matchRight_H = height_Right - max_loc[1] + left_height_begin
dst_y_start = 0
if height_dst == matchRight_H:
matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
elif height_dst < matchRight_H:
matchRight = imageRight[max_loc[1] - left_height_begin: height_Right - 1, max_loc[0]:width_Right]
else:
matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
dst_y_start = height_dst - matchRight_H
# copy right image
# matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
drawRightRect = imageRight.copy()
h, w = template_left.shape[:2]
cv2.rectangle(drawRightRect, (max_loc[0],max_loc[1]), (max_loc[0] + w, max_loc[1] + h ), (0, 0, 255), 1)
#
cv2.imshow("drawRightRect", drawRightRect)
# cv2.imshow("matchRight", matchRight)
# print("height_Right " + str(height_Right - max_loc[1] + left_height_begin))
# print("matchRight" + str(matchRight.shape))
height_mr, width_mr = matchRight.shape[:2]
# print("dstStitch" + str(dstStitch.shape))
dstStitch[dst_y_start:height_dst, left_width_begin:width_mr + left_width_begin] = matchRight.copy()
# # 圖像融合處理相圖相交的地方 效果不好
# for i in range(0, height_dst):
# # if i + winHeight > height:
# # i_heiht = True
# for j in range(0, width_dst):
# if j == left_width_begin:
#
# j += 1
# (b1, g1, r1) = dstStitch[i, j]
# j -= 1
#
# dstStitch[i, j] = (b1, g1, r1)
# cv2.imwrite("fineFlower04.jpg", dstStitch)
cv2.imshow("dstStitch", dstStitch)
cv2.waitKey()
if __name__ == "__main__":
# imageLeft = cv2.imread("Images/Scan/2.jpg")
# imageRight = cv2.imread("Images/Scan/3.jpg")
imageLeft = cv2.imread("Images/Scan/flower05.jpg")
imageRight = cv2.imread("Images/Scan/flower06.jpg")
if imageLeft is None or imageRight is None:
print("NOTICE: No images")
else:
# cv2.imshow("image", imageLeft)
# cv2.waitKey()
matchStitch(imageLeft, imageRight)
計(jì)算時(shí)需要注意的是模板區(qū)域一定要在拼接的左右兩張圖中都有,如果疏忽導(dǎo)致左圖中模板較大,而右較中選的區(qū)域沒有完整的模型就接錯(cuò)了。
# 右邊匹配區(qū)域 match_right = imageRight[0:height_Right, 0: int(width_Right/2)]
右邊先一半,一部分模板的不在里面了,就會(huì)拼的效果不好

邊緣的區(qū)域還有改進(jìn)的地方,后面有空再寫。
到此這篇關(guān)于Python OpenCV實(shí)現(xiàn)基于模板的圖像拼接的文章就介紹到這了,更多相關(guān)Python OpenCV圖像拼接內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
matplotlib繪制多子圖共享鼠標(biāo)光標(biāo)的方法示例
這篇文章主要介紹了matplotlib繪制多子圖共享鼠標(biāo)光標(biāo)的方法示例,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2021-01-01
Python深度學(xué)習(xí)之Unet?語義分割模型(Keras)
這篇文章主要介紹了語義分割任務(wù)中Unet一個(gè)有意思的模型-Keras。Keras是一個(gè)由Python編寫的開源人工神經(jīng)網(wǎng)絡(luò)庫,可進(jìn)行深度學(xué)習(xí)模型的設(shè)計(jì)、調(diào)試、評(píng)估、應(yīng)用和可視化。感興趣的小伙伴快來跟隨小編一起學(xué)習(xí)一下吧2021-12-12
簡(jiǎn)單利用conda安裝tensorflow-gpu=2.2.0的過程及問題解決
這篇文章主要介紹了簡(jiǎn)單利用conda安裝tensorflow-gpu=2.2.0,本文給大家詳細(xì)分享問題記錄及錯(cuò)誤問題解決方案,需要的朋友可以參考下2023-01-01
openstack中的rpc遠(yuǎn)程調(diào)用的方法
今天通過本文給大家分享openstack中的rpc遠(yuǎn)程調(diào)用的方法,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友參考下吧2021-07-07
Python數(shù)據(jù)清洗工具之Numpy的基本操作
Numpy的操作對(duì)象是一個(gè)ndarray,所以在使用這個(gè)庫進(jìn)行計(jì)算的時(shí)候需要將數(shù)據(jù)進(jìn)行轉(zhuǎn)化,這篇文章主要介紹了Python數(shù)據(jù)清洗工具之Numpy的基本操作,需要的朋友可以參考下2021-04-04

