Django中prefetch_related()函數(shù)優(yōu)化實戰(zhàn)指南
前言
對于多對多字段(ManyToManyField)和一對多字段, 可以使用prefetch_related()來進(jìn)行優(yōu)化
prefetch_related()和select_related()的設(shè)計目的很相似,都是為了減少SQL查詢的數(shù)量,但是實現(xiàn)的方式不一樣。后者是通過JOIN語句,在SQL查詢內(nèi)解決問題。但是對于多對多關(guān)系,使用SQL語句解決就顯得有些不太明智,因為JOIN得到的表將會很長,會導(dǎo)致SQL語句運(yùn)行時間的增加和內(nèi)存占用的增加。若有n個對象,每個對象的多對多字段對應(yīng)Mi條,就會生成Σ(n)Mi 行的結(jié)果表。prefetch_related()的解決方法是,分別查詢每個表,然后用Python處理他們之間的關(guān)系。繼續(xù)以上邊的例子進(jìn)行說明,如果我們要獲得張三所有去過的城市,使用prefetch_related()應(yīng)該是這么做:
zhangs = Person.objects.prefetch_related('visitation').get(firstname=u"張",lastname=u"三") >>> for city in zhangs.visitation.all() : ... print city
上述代碼觸發(fā)的SQL查詢?nèi)缦拢?/p>
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person` WHERE (`QSOptimize_person`.`lastname` = '三' AND `QSOptimize_person`.`firstname` = '張'); SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE `QSOptimize_person_visitation`.`person_id` IN (1);
第一條SQL查詢僅僅是獲取張三的Person對象,第二條比較關(guān)鍵,它選取關(guān)系表`QSOptimize_person_visitation`中`person_id`為張三的行,然后和`city`表內(nèi)聯(lián)(INNER JOIN 也叫等值連接)得到結(jié)果表。
+----+-----------+----------+-------------+-----------+ | id | firstname | lastname | hometown_id | living_id | +----+-----------+----------+-------------+-----------+ | 1 | 張 | 三 | 3 | 1 | +----+-----------+----------+-------------+-----------+ 1 row in set (0.00 sec) +-----------------------+----+-----------+-------------+ | _prefetch_related_val | id | name | province_id | +-----------------------+----+-----------+-------------+ | 1 | 1 | 武漢市 | 1 | | 1 | 2 | 廣州市 | 2 | | 1 | 3 | 十堰市 | 1 | +-----------------------+----+-----------+-------------+ 3 rows in set (0.00 sec)
顯然張三武漢、廣州、十堰都去過。
又或者,我們要獲得湖北的所有城市名,可以這樣:
>>> hb = Province.objects.prefetch_related('city_set').get(name__iexact=u"湖北省") >>> for city in hb.city_set.all(): ... city.name ...
觸發(fā)的SQL查詢:
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`name` LIKE '湖北省' ; SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` WHERE `QSOptimize_city`.`province_id` IN (1);
得到的表:
+----+-----------+ | id | name | +----+-----------+ | 1 | 湖北省 | +----+-----------+ 1 row in set (0.00 sec) +----+-----------+-------------+ | id | name | province_id | +----+-----------+-------------+ | 1 | 武漢市 | 1 | | 3 | 十堰市 | 1 | +----+-----------+-------------+ 2 rows in set (0.00 sec)
我們可以看見,prefetch使用的是 IN 語句實現(xiàn)的。這樣,在QuerySet中的對象數(shù)量過多的時候,根據(jù)數(shù)據(jù)庫特性的不同有可能造成性能問題。
使用方法
*lookups 參數(shù)
prefetch_related()在Django < 1.7 只有這一種用法。和select_related()一樣,prefetch_related()也支持深度查詢,例如要獲得所有姓張的人去過的?。?/p>
>>> zhangs = Person.objects.prefetch_related('visitation__province').filter(firstname__iexact=u'張') >>> for i in zhangs: ... for city in i.visitation.all(): ... print city.province ...
觸發(fā)的SQL:
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person` WHERE `QSOptimize_person`.`firstname` LIKE '張' ; SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE `QSOptimize_person_visitation`.`person_id` IN (1, 4); SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` IN (1, 2);
獲得的結(jié)果:
+----+-----------+----------+-------------+-----------+ | id | firstname | lastname | hometown_id | living_id | +----+-----------+----------+-------------+-----------+ | 1 | 張 | 三 | 3 | 1 | | 4 | 張 | 六 | 2 | 2 | +----+-----------+----------+-------------+-----------+ 2 rows in set (0.00 sec) +-----------------------+----+-----------+-------------+ | _prefetch_related_val | id | name | province_id | +-----------------------+----+-----------+-------------+ | 1 | 1 | 武漢市 | 1 | | 1 | 2 | 廣州市 | 2 | | 4 | 2 | 廣州市 | 2 | | 1 | 3 | 十堰市 | 1 | +-----------------------+----+-----------+-------------+ 4 rows in set (0.00 sec) +----+-----------+ | id | name | +----+-----------+ | 1 | 湖北省 | | 2 | 廣東省 | +----+-----------+ 2 rows in set (0.00 sec)
值得一提的是,鏈?zhǔn)絧refetch_related會將這些查詢添加起來,就像1.7中的select_related那樣。
要注意的是,在使用QuerySet的時候,一旦在鏈?zhǔn)讲僮髦懈淖兞藬?shù)據(jù)庫請求,之前用prefetch_related緩存的數(shù)據(jù)將會被忽略掉。這會導(dǎo)致Django重新請求數(shù)據(jù)庫來獲得相應(yīng)的數(shù)據(jù),從而造成性能問題。這里提到的改變數(shù)據(jù)庫請求指各種filter()、exclude()等等最終會改變SQL代碼的操作。而all()并不會改變最終的數(shù)據(jù)庫請求,因此是不會導(dǎo)致重新請求數(shù)據(jù)庫的。
舉個例子,要獲取所有人訪問過的城市中帶有“市”字的城市,這樣做會導(dǎo)致大量的SQL查詢:
plist =Person.objects.prefetch_related('visitation') [p.visitation.filter(name__icontains=u"市")for p in plist]
因為數(shù)據(jù)庫中有4人,導(dǎo)致了2+4次SQL查詢:
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person`; SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE `QSOptimize_person_visitation`.`person_id` IN (1, 2, 3, 4); SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE(`QSOptimize_person_visitation`.`person_id` = 1 AND `QSOptimize_city`.`name` LIKE '%市%' ); SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE (`QSOptimize_person_visitation`.`person_id` = 2 AND `QSOptimize_city`.`name` LIKE '%市%' ); SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE (`QSOptimize_person_visitation`.`person_id` = 3 AND `QSOptimize_city`.`name` LIKE '%市%' ); SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE (`QSOptimize_person_visitation`.`person_id` = 4 AND `QSOptimize_city`.`name` LIKE '%市%' );
眾所周知,QuerySet是lazy的,要用的時候才會去訪問數(shù)據(jù)庫。運(yùn)行到第二行Python代碼時,for循環(huán)將plist看做iterator,這會觸發(fā)數(shù)據(jù)庫查詢。最初的兩次SQL查詢就是prefetch_related導(dǎo)致的。
雖然已經(jīng)查詢結(jié)果中包含所有所需的city的信息,但因為在循環(huán)體中對Person.visitation進(jìn)行了filter操作,這顯然改變了數(shù)據(jù)庫請求。因此這些操作會忽略掉之前緩存到的數(shù)據(jù),重新進(jìn)行SQL查詢。
但是如果有這樣的需求了應(yīng)該怎么辦呢?在Django >= 1.7,可以通過下一節(jié)的Prefetch對象來實現(xiàn),如果你的環(huán)境是Django < 1.7,可以在Python中完成這部分操作。
plist = Person.objects.prefetch_related('visitation') [[city for city in p.visitation.all() if u"市" in city.name] for p in plist]
Prefetch對象
在Django >= 1.7,可以用Prefetch對象來控制prefetch_related函數(shù)的行為。
1.一個Prefetch對象只能指定一項prefetch操作。
2.Prefetch對象對字段指定的方式和prefetch_related中的參數(shù)相同,都是通過雙下劃線連接的字段名完成的。
3.可以通過 queryset 參數(shù)手動指定prefetch使用的QuerySet。
4.可以通過 to_attr 參數(shù)指定prefetch到的屬性名。
5.Prefetch對象和字符串形式指定的lookups參數(shù)可以混用。
最佳實踐
1.prefetch_related主要針一對多和多對多關(guān)系進(jìn)行優(yōu)化。
2.prefetch_related通過分別獲取各個表的內(nèi)容,然后用Python處理他們之間的關(guān)系來進(jìn)行優(yōu)化。
3.可以通過可變長參數(shù)指定需要select_related的字段名。指定方式和特征與select_related是相同的。
4.在Django >= 1.7可以通過Prefetch對象來實現(xiàn)復(fù)雜查詢,但低版本的Django好像只能自己實現(xiàn)。
5.作為prefetch_related的參數(shù),Prefetch對象和字符串可以混用。
6.prefetch_related的鏈?zhǔn)秸{(diào)用會將對應(yīng)的prefetch添加進(jìn)去,而非替換,似乎沒有基于不同版本上區(qū)別。
7.可以通過傳入None來清空之前的prefetch_related。
選擇哪個函數(shù)
如果我們想要獲得所有家鄉(xiāng)是湖北的人,最無腦的做法是先獲得湖北省,再獲得湖北的所有城市,最后獲得故鄉(xiāng)是這個城市的人。就像這樣:
>>> hb = Province.objects.get(name__iexact=u"湖北省") >>> people = [] >>> for city in hb.city_set.all(): ... people.extend(city.birth.all()) ...
顯然這不是一個明智的選擇,因為這樣做會導(dǎo)致1+(湖北省城市數(shù))次SQL查詢。反正是個反例,導(dǎo)致的查詢和獲得掉結(jié)果就不列出來了。prefetch_related() 或許是一個好的解決方法,讓我們來看看。
>>> hb = Province.objects.prefetch_related("city_set__birth").objects.get(name__iexact=u"湖北省") >>> people = [] >>> for city in hb.city_set.all(): ... people.extend(city.birth.all()) ...
因為是一個深度為2的prefetch,所以會導(dǎo)致3次SQL查詢:
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`name` LIKE '湖北省' ; SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` WHERE `QSOptimize_city`.`province_id` IN (1); SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person` WHERE `QSOptimize_person`.`hometown_id` IN (1, 3);
嗯…看上去不錯,但是3次查詢么?倒過來查詢可能會更簡單?
>>> people = list(Person.objects.select_related("hometown__province").filter(hometown__province__name__iexact=u"湖北省"))
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_person` INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`hometown_id` = `QSOptimize_city`.`id`) INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) WHERE `QSOptimize_province`.`name` LIKE '湖北省';
+----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+ | id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name | +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+ | 1 | 張 | 三 | 3 | 1 | 3 | 十堰市 | 1 | 1 | 湖北省 | | 2 | 李 | 四 | 1 | 3 | 1 | 武漢市 | 1 | 1 | 湖北省 | | 3 | 王 | 麻子 | 3 | 2 | 3 | 十堰市 | 1 | 1 | 湖北省 | +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+ 3 rows in set (0.00 sec)
完全沒問題。不僅SQL查詢的數(shù)量減少了,python程序上也精簡了。select_related()的效率要高于prefetch_related()。因此,最好在能用select_related()的地方盡量使用它,也就是說,對于ForeignKey字段,避免使用prefetch_related()。對于同一個QuerySet,你可以同時使用這兩個函數(shù)。在我們一直使用的例子上加一個model:Order (訂單)
class Order(models.Model): customer = models.ForeignKey(Person) orderinfo = models.CharField(max_length=50) time = models.DateTimeField(auto_now_add = True) def __unicode__(self): return self.orderinfo
如果我們拿到了一個訂單的id 我們要知道這個訂單的客戶去過的省份。因為有ManyToManyField顯然必須要用prefetch_related()。如果只用prefetch_related()會怎樣呢?
>>> plist = Order.objects.prefetch_related('customer__visitation__province').get(id=1) >>> for city in plist.customer.visitation.all(): ... print city.province.name ...
顯然,關(guān)系到了4個表:Order、Person、City、Province,根據(jù)prefetch_related()的特性就得有4次SQL查詢
SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time` FROM `QSOptimize_order` WHERE `QSOptimize_order`.`id` = 1 ; SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person` WHERE `QSOptimize_person`.`id` IN (1); SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE `QSOptimize_person_visitation`.`person_id` IN (1); SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` IN (1, 2);
+----+-------------+---------------+---------------------+ | id | customer_id | orderinfo | time | +----+-------------+---------------+---------------------+ | 1 | 1 | Info of Order | 2014-08-10 17:05:48 | +----+-------------+---------------+---------------------+ 1 row in set (0.00 sec) +----+-----------+----------+-------------+-----------+ | id | firstname | lastname | hometown_id | living_id | +----+-----------+----------+-------------+-----------+ | 1 | 張 | 三 | 3 | 1 | +----+-----------+----------+-------------+-----------+ 1 row in set (0.00 sec) +-----------------------+----+--------+-------------+ | _prefetch_related_val | id | name | province_id | +-----------------------+----+--------+-------------+ | 1 | 1 | 武漢市 | 1 | | 1 | 2 | 廣州市 | 2 | | 1 | 3 | 十堰市 | 1 | +-----------------------+----+--------+-------------+ 3 rows in set (0.00 sec) +----+--------+ | id | name | +----+--------+ | 1 | 湖北省 | | 2 | 廣東省 | +----+--------+ 2 rows in set (0.00 sec)
更好的辦法是先調(diào)用一次select_related()再調(diào)用prefetch_related(),最后再select_related()后面的表
>>> plist = Order.objects.select_related('customer').prefetch_related('customer__visitation__province').get(id=1) >>> for city in plist.customer.visitation.all(): ... print city.province.name ...
這樣只會有3次SQL查詢,Django會先做select_related,之后prefetch_related的時候會利用之前緩存的數(shù)據(jù),從而避免了1次額外的SQL查詢:
SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time`, `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_order` INNER JOIN `QSOptimize_person` ON (`QSOptimize_order`.`customer_id` = `QSOptimize_person`.`id`) WHERE `QSOptimize_order`.`id` = 1 ; SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE `QSOptimize_person_visitation`.`person_id` IN (1); SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` IN (1, 2);
+----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+ | id | customer_id | orderinfo | time | id | firstname | lastname | hometown_id | living_id | +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+ | 1 | 1 | Info of Order | 2014-08-10 17:05:48 | 1 | 張 | 三 | 3 | 1 | +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+ 1 row in set (0.00 sec) +-----------------------+----+--------+-------------+ | _prefetch_related_val | id | name | province_id | +-----------------------+----+--------+-------------+ | 1 | 1 | 武漢市 | 1 | | 1 | 2 | 廣州市 | 2 | | 1 | 3 | 十堰市 | 1 | +-----------------------+----+--------+-------------+ 3 rows in set (0.00 sec) +----+--------+ | id | name | +----+--------+ | 1 | 湖北省 | | 2 | 廣東省 | +----+--------+ 2 rows in set (0.00 sec)
值得注意的是,可以在調(diào)用prefetch_related之前調(diào)用select_related,并且Django會按照你想的去做:先select_related,然后利用緩存到的數(shù)據(jù)prefetch_related。然而一旦prefetch_related已經(jīng)調(diào)用,select_related將不起作用。
小結(jié)
- 因為select_related()總是在單次SQL查詢中解決問題,而prefetch_related()會對每個相關(guān)表進(jìn)行SQL查詢,因此select_related()的效率通常比后者高。
- 鑒于第一條,盡可能的用select_related()解決問題。只有在select_related()不能解決問題的時候再去想prefetch_related()。
- 你可以在一個QuerySet中同時使用select_related()和prefetch_related(),從而減少SQL查詢的次數(shù)。
- 只有prefetch_related()之前的select_related()是有效的,之后的將會被無視掉。
總結(jié)
到此這篇關(guān)于Django中prefetch_related()函數(shù)優(yōu)化實戰(zhàn)指南的文章就介紹到這了,更多相關(guān)Django prefetch_related()函數(shù)優(yōu)化內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
- Django中select_related和prefetch_related的用法與區(qū)別詳解
- 利用Django框架中select_related和prefetch_related函數(shù)對數(shù)據(jù)庫查詢優(yōu)化
- Python的Django框架中的select_related函數(shù)對QuerySet 查詢的優(yōu)化
- Django中QuerySet查詢優(yōu)化之prefetch_related詳解
- 用實例詳解Python中的Django框架中prefetch_related()函數(shù)對數(shù)據(jù)庫查詢的優(yōu)化
- django中的select_related和prefetch_related性能優(yōu)化分析
相關(guān)文章
python Django里CSRF 對應(yīng)策略詳解
這篇文章主要介紹了python Django里CSRF 對應(yīng)策略詳解,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下2019-08-08python之tensorflow手把手實例講解貓狗識別實現(xiàn)
要說到深度學(xué)習(xí)圖像分類的經(jīng)典案例之一,那就是貓狗大戰(zhàn)了。貓和狗在外觀上的差別還是挺明顯的,無論是體型、四肢、臉龐和毛發(fā)等等, 都是能通過肉眼很容易區(qū)分的。那么如何讓機(jī)器來識別貓和狗呢?網(wǎng)上已經(jīng)有不少人寫過這案例了,我也來嘗試下練練手。2021-09-09Python集成學(xué)習(xí)之Blending算法詳解
集成學(xué)習(xí)(又稱模型融合)就是結(jié)合若干個體分類器(基學(xué)習(xí)器)進(jìn)行綜合預(yù)測,各個個體學(xué)習(xí)器通常是弱學(xué)習(xí)器.集成學(xué)習(xí)相較于個體學(xué)習(xí)在預(yù)測準(zhǔn)確率以及穩(wěn)定性上都有很大的提高.文中有非常詳細(xì)的代碼示例哦,需要的朋友可以參考下2021-05-05python中shapefile庫讀取shapefile文件信息
本文主要介紹了python中shapefile庫讀取shapefile文件信息,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2023-06-06