pytorch?K折交叉驗(yàn)證過程說明及實(shí)現(xiàn)方式
K折交叉交叉驗(yàn)證的過程如下
以200條數(shù)據(jù),十折交叉驗(yàn)證為例子,十折也就是將數(shù)據(jù)分成10組,進(jìn)行10組訓(xùn)練,每組用于測(cè)試的數(shù)據(jù)為:數(shù)據(jù)總條數(shù)/組數(shù),即每組20條用于valid,180條用于train,每次valid的都是不同的。
(1)將200條數(shù)據(jù),分成按照 數(shù)據(jù)總條數(shù)/組數(shù)(折數(shù)),進(jìn)行切分。然后取出第i份作為第i次的valid,剩下的作為train
(2)將每組中的train數(shù)據(jù)利用DataLoader和Dataset,進(jìn)行封裝。
(3)將train數(shù)據(jù)用于訓(xùn)練,epoch可以自己定義,然后利用valid做驗(yàn)證。得到一次的train_loss和 valid_loss。
(4)重復(fù)(2)(3)步驟,得到最終的 averge_train_loss和averge_valid_loss
上述過程如下圖所示:
上述的代碼如下:
import torch import torch.nn as nn from torch.utils.data import DataLoader,Dataset import torch.nn.functional as F from torch.autograd import Variable #####構(gòu)造的訓(xùn)練集#### x = torch.rand(100,28,28) y = torch.randn(100,28,28) x = torch.cat((x,y),dim=0) label =[1] *100 + [0]*100 label = torch.tensor(label,dtype=torch.long) ######網(wǎng)絡(luò)結(jié)構(gòu)########## class Net(nn.Module): #定義Net def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(28*28, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features ##########定義dataset########## class TraindataSet(Dataset): def __init__(self,train_features,train_labels): self.x_data = train_features self.y_data = train_labels self.len = len(train_labels) def __getitem__(self,index): return self.x_data[index],self.y_data[index] def __len__(self): return self.len ########k折劃分############ def get_k_fold_data(k, i, X, y): ###此過程主要是步驟(1) # 返回第i折交叉驗(yàn)證時(shí)所需要的訓(xùn)練和驗(yàn)證數(shù)據(jù),分開放,X_train為訓(xùn)練數(shù)據(jù),X_valid為驗(yàn)證數(shù)據(jù) assert k > 1 fold_size = X.shape[0] // k # 每份的個(gè)數(shù):數(shù)據(jù)總條數(shù)/折數(shù)(組數(shù)) X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) #slice(start,end,step)切片函數(shù) ##idx 為每組 valid X_part, y_part = X[idx, :], y[idx] if j == i: ###第i折作valid X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = torch.cat((X_train, X_part), dim=0) #dim=0增加行數(shù),豎著連接 y_train = torch.cat((y_train, y_part), dim=0) #print(X_train.size(),X_valid.size()) return X_train, y_train, X_valid,y_valid def k_fold(k, X_train, y_train, num_epochs=3,learning_rate=0.001, weight_decay=0.1, batch_size=5): train_loss_sum, valid_loss_sum = 0, 0 train_acc_sum ,valid_acc_sum = 0,0 for i in range(k): data = get_k_fold_data(k, i, X_train, y_train) # 獲取k折交叉驗(yàn)證的訓(xùn)練和驗(yàn)證數(shù)據(jù) net = Net() ### 實(shí)例化模型 ### 每份數(shù)據(jù)進(jìn)行訓(xùn)練,體現(xiàn)步驟三#### train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,\ weight_decay, batch_size) print('*'*25,'第',i+1,'折','*'*25) print('train_loss:%.6f'%train_ls[-1][0],'train_acc:%.4f\n'%valid_ls[-1][1],\ 'valid loss:%.6f'%valid_ls[-1][0],'valid_acc:%.4f'%valid_ls[-1][1]) train_loss_sum += train_ls[-1][0] valid_loss_sum += valid_ls[-1][0] train_acc_sum += train_ls[-1][1] valid_acc_sum += valid_ls[-1][1] print('#'*10,'最終k折交叉驗(yàn)證結(jié)果','#'*10) ####體現(xiàn)步驟四##### print('train_loss_sum:%.4f'%(train_loss_sum/k),'train_acc_sum:%.4f\n'%(train_acc_sum/k),\ 'valid_loss_sum:%.4f'%(valid_loss_sum/k),'valid_acc_sum:%.4f'%(valid_acc_sum/k)) #########訓(xùn)練函數(shù)########## def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate,weight_decay, batch_size): train_ls, test_ls = [], [] ##存儲(chǔ)train_loss,test_loss dataset = TraindataSet(train_features, train_labels) train_iter = DataLoader(dataset, batch_size, shuffle=True) ### 將數(shù)據(jù)封裝成 Dataloder 對(duì)應(yīng)步驟(2) #這里使用了Adam優(yōu)化算法 optimizer = torch.optim.Adam(params=net.parameters(), lr= learning_rate, weight_decay=weight_decay) for epoch in range(num_epochs): for X, y in train_iter: ###分批訓(xùn)練 output = net(X) loss = loss_func(output,y) optimizer.zero_grad() loss.backward() optimizer.step() ### 得到每個(gè)epoch的 loss 和 accuracy train_ls.append(log_rmse(0,net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(1,net, test_features, test_labels)) #print(train_ls,test_ls) return train_ls, test_ls def log_rmse(flag,net,x,y): if flag == 1: ### valid 數(shù)據(jù)集 net.eval() output = net(x) result = torch.max(output,1)[1].view(y.size()) corrects = (result.data == y.data).sum().item() accuracy = corrects*100.0/len(y) #### 5 是 batch_size loss = loss_func(output,y) net.train() return (loss.data.item(),accuracy) loss_func = nn.CrossEntropyLoss() ###申明loss函 k_fold(10,x,label) ### k=10,十折交叉驗(yàn)證
上述代碼中,直接按照順序從x中每次截取20條作為valid,也可以先打亂然后在截取,這樣效果應(yīng)該會(huì)更好。
如下所示:
import random import torch x = torch.rand(100,28,28) y = torch.randn(100,28,28) x = torch.cat((x,y),dim=0) label =[1] *100 + [0]*100 label = torch.tensor(label,dtype=torch.long) index = [i for i in range(len(x))] random.shuffle(index) x = x[index] label = label[index]
交叉驗(yàn)證區(qū)分k折代碼分析
from sklearn.model_selection import GroupKFold x = np.array([1,2,3,4,5,6,7,8,9,10]) y = np.array([1,2,3,4,5,6,7,8,9,10]) z = np.array(['hello1','hello2','hello3','hello4','hello5','hello6','hello7','hello8','hello9','hello10']) gkf = GroupKFold(n_splits = 5) for i,(train_idx,valid_idx) in enumerate(list(gkf.split(x,y,z))): #groups:object,Always ignored,exists for compatibility. print('train_idx = ') print(train_idx) print('valid_idx = ') print(valid_idx)
可以看出來首先train_idx以及valid_idx的相應(yīng)值都是從中亂序提取的,其次每個(gè)相應(yīng)值只提取一次,不會(huì)重復(fù)提取。
注意交叉驗(yàn)證的流程:這里首先放一個(gè)對(duì)應(yīng)的交叉驗(yàn)證的圖片:
注意這里的訓(xùn)練方式是每個(gè)初始化的模型分別訓(xùn)練n折的數(shù)值,然后算出對(duì)應(yīng)的權(quán)重內(nèi)容
也就是說這里每一次計(jì)算對(duì)應(yīng)的權(quán)重內(nèi)容(1~n)的時(shí)候,需要將模型的權(quán)重初始化,然后再進(jìn)行訓(xùn)練,訓(xùn)練最終結(jié)束之后,模型的權(quán)重為訓(xùn)練完成之后的平均值,多模類似于模型融合
總結(jié)
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
python 如何將兩個(gè)實(shí)數(shù)矩陣合并為一個(gè)復(fù)數(shù)矩陣
這篇文章主要介紹了使用python實(shí)現(xiàn)將兩個(gè)實(shí)數(shù)矩陣合并為一個(gè)復(fù)數(shù)矩陣的操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。2021-05-05基于python純函數(shù)實(shí)現(xiàn)井字棋游戲
這篇文章主要介紹了基于python純函數(shù)實(shí)現(xiàn)井字棋游戲,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-05-05pd.drop_duplicates刪除重復(fù)行的方法實(shí)現(xiàn)
drop_duplicates 方法實(shí)現(xiàn)對(duì)數(shù)據(jù)框 DataFrame 去除特定列的重復(fù)行,本文主要介紹了pd.drop_duplicates刪除重復(fù)行的方法實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2022-06-06Java實(shí)現(xiàn)的執(zhí)行python腳本工具類示例【使用jython.jar】
這篇文章主要介紹了Java實(shí)現(xiàn)的執(zhí)行python腳本工具類,結(jié)合實(shí)例形式分析了java使用jython.jar執(zhí)行Python腳本的具體操作技巧,需要的朋友可以參考下2018-03-03