Pytorch實(shí)現(xiàn)Fashion-mnist分類任務(wù)全過程
數(shù)據(jù)概況
Fashion-mnist
經(jīng)典的MNIST數(shù)據(jù)集包含了大量的手寫數(shù)字。十幾年來,來自機(jī)器學(xué)習(xí)、機(jī)器視覺、人工智能、深度學(xué)習(xí)領(lǐng)域的研究員們把這個(gè)數(shù)據(jù)集作為衡量算法的基準(zhǔn)之一。
你會(huì)在很多的會(huì)議,期刊的論文中發(fā)現(xiàn)這個(gè)數(shù)據(jù)集的身影。實(shí)際上,MNIST數(shù)據(jù)集已經(jīng)成為算法作者的必測的數(shù)據(jù)集之一。
類別標(biāo)注
在Fashion-mnist數(shù)據(jù)集中,每個(gè)訓(xùn)練樣本都按照以下類別進(jìn)行了標(biāo)注:

數(shù)據(jù)處理
對輸入進(jìn)行歸一化
歸一化時(shí)需要統(tǒng)一進(jìn)行 x = (x - mean) / std
train_trans = transforms.Compose([
transforms.RandomCrop(28, padding=2),#數(shù)據(jù)增強(qiáng)
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
test_trans = transforms.Compose([
transforms.ToTensor(),
normalize
])
mnist_train = torchvision.datasets.FashionMNIST(root='../data',train=True,download=True,transform=train_trans)
mnist_test = torchvision.datasets.FashionMNIST(root='../data',train=False,download=True,transform=test_trans)
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False)
# 求整個(gè)數(shù)據(jù)集的均值
temp_sum = 0
cnt = 0
for X, y in train_iter:
if y.shape[0] != batch_size:
break # 最后一個(gè)batch不足batch_size,這里就忽略了
channel_mean = torch.mean(X, dim=(0,2,3)) # 按channel求均值(不過這里只有1個(gè)channel)
cnt += 1 # cnt記錄的是batch的個(gè)數(shù),不是圖像
temp_sum += channel_mean[0].item()
dataset_global_mean = temp_sum / cnt
print('整個(gè)數(shù)據(jù)集的像素均值:{}'.format(dataset_global_mean))
# 求整個(gè)數(shù)據(jù)集的標(biāo)準(zhǔn)差
cnt = 0
temp_sum = 0
for X, y in train_iter:
if y.shape[0] != batch_size:
break # 最后一個(gè)batch不足batch_size,這里就忽略了
residual = (X - dataset_global_mean) ** 2
channel_var_mean = torch.mean(residual, dim=(0,2,3))
cnt += 1 # cnt記錄的是batch的個(gè)數(shù),不是圖像
temp_sum += math.sqrt(channel_var_mean[0].item())
dataset_global_std = temp_sum / cnt
print('整個(gè)數(shù)據(jù)集的像素標(biāo)準(zhǔn)差:{}'.format(dataset_global_std))
整個(gè)數(shù)據(jù)集的像素均值:0.2860366729433025
整個(gè)數(shù)據(jù)集的像素標(biāo)準(zhǔn)差:0.35288708155778725
數(shù)據(jù)增強(qiáng)
加入隨機(jī)裁剪和翻轉(zhuǎn)
============================ step 1/6 數(shù)據(jù) ============================
batch_size = 64
normalize = transforms.Normalize(mean=[0.286], std=[0.352])#對像素值歸一化
train_trans = transforms.Compose([
transforms.RandomCrop(28, padding=2),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
test_trans = transforms.Compose([
transforms.ToTensor(),
normalize
])
mnist_train = torchvision.datasets.FashionMNIST(root='../data',train=True,download=True,transform=train_trans)
mnist_test = torchvision.datasets.FashionMNIST(root='../data',train=False,download=True,transform=test_trans)
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False)
定義Resnet網(wǎng)絡(luò)
class GlobalAvgPool2d(nn.Module):
"""
全局平均池化層
可通過將普通的平均池化的窗口形狀設(shè)置成輸入的高和寬實(shí)現(xiàn)
"""
def __init__(self):
super(GlobalAvgPool2d, self).__init__()
def forward(self, x):
return F.avg_pool2d(x, kernel_size=x.size()[2:])
class FlattenLayer(torch.nn.Module):
def __init__(self):
super(FlattenLayer, self).__init__()
def forward(self, x): # x shape: (batch, *, *, ...)
return x.view(x.shape[0], -1)
class Residual(nn.Module):
def __init__(self, in_channels, out_channels, use_1x1conv=False, stride=1):
"""
use_1×1conv: 是否使用額外的1x1卷積層來修改通道數(shù)
stride: 卷積層的步幅, resnet使用步長為2的卷積來替代pooling的作用,是個(gè)很贊的idea
"""
super(Residual, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
return F.relu(Y + X)
def resnet_block(in_channels, out_channels, num_residuals, first_block=False):
'''
resnet block
num_residuals: 當(dāng)前block包含多少個(gè)殘差塊
first_block: 是否為第一個(gè)block
一個(gè)resnet block由num_residuals個(gè)殘差塊組成
其中第一個(gè)殘差塊起到了通道數(shù)的轉(zhuǎn)換和pooling的作用
后面的若干殘差塊就是完成正常的特征提取
'''
if first_block:
assert in_channels == out_channels # 第一個(gè)模塊的輸出通道數(shù)同輸入通道數(shù)一致
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(Residual(in_channels, out_channels, use_1x1conv=True, stride=2))
else:
blk.append(Residual(out_channels, out_channels))
return nn.Sequential(*blk)
# 定義resnet模型結(jié)構(gòu)
net = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1), # TODO: 縮小感受野, 縮channel
nn.BatchNorm2d(32),
nn.ReLU())
# nn.ReLU(),
# nn.MaxPool2d(kernel_size=2, stride=2)) # TODO:去掉maxpool縮小感受野
# 然后是連續(xù)4個(gè)block
net.add_module("resnet_block1", resnet_block(32, 32, 2, first_block=True)) # TODO: channel統(tǒng)一減半
net.add_module("resnet_block2", resnet_block(32, 64, 2))
net.add_module("resnet_block3", resnet_block(64, 128, 2))
net.add_module("resnet_block4", resnet_block(128, 256, 2))
# global average pooling
net.add_module("global_avg_pool", GlobalAvgPool2d())
# fc layer
net.add_module("fc", nn.Sequential(FlattenLayer(), nn.Linear(256, 10)))
訓(xùn)練與測試
def evaluate_accuracy(data_iter, net, device=None):
#評估模型在測試集的準(zhǔn)確率
if device is None and isinstance(net, torch.nn.Module):
# 如果沒指定device就使用net的device
device = list(net.parameters())[0].device
net.eval()
acc_sum, n = 0.0, 0
with torch.no_grad():
for X, y in data_iter:
acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
n += y.shape[0]
net.train() # 改回訓(xùn)練模式
return acc_sum / n
def train_model(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
net = net.to(device)
print("training on ", device)
loss = torch.nn.CrossEntropyLoss()
best_test_acc = 0
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
for X, y in train_iter:
X = X.to(device)
y = y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
optimizer.zero_grad()
l.backward()
optimizer.step()
train_l_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
% (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))
if test_acc > best_test_acc:
print('find best! save at model/best.pth')
best_test_acc = test_acc
torch.save(net.state_dict(), 'model/best.pth')
lr, num_epochs = 0.01, 10
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_model(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
完整代碼
import os
import sys
import time
import torch
from torch import nn, optim
import torch.nn.functional as F
import torchvision
from torchvision import transforms
class GlobalAvgPool2d(nn.Module):
"""
全局平均池化層
可通過將普通的平均池化的窗口形狀設(shè)置成輸入的高和寬實(shí)現(xiàn)
"""
def __init__(self):
super(GlobalAvgPool2d, self).__init__()
def forward(self, x):
return F.avg_pool2d(x, kernel_size=x.size()[2:])
class FlattenLayer(torch.nn.Module):
def __init__(self):
super(FlattenLayer, self).__init__()
def forward(self, x): # x shape: (batch, *, *, ...)
return x.view(x.shape[0], -1)
class Residual(nn.Module):
def __init__(self, in_channels, out_channels, use_1x1conv=False, stride=1):
"""
use_1×1conv: 是否使用額外的1x1卷積層來修改通道數(shù)
stride: 卷積層的步幅, resnet使用步長為2的卷積來替代pooling的作用,是個(gè)很贊的idea
"""
super(Residual, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
return F.relu(Y + X)
def resnet_block(in_channels, out_channels, num_residuals, first_block=False):
'''
resnet block
num_residuals: 當(dāng)前block包含多少個(gè)殘差塊
first_block: 是否為第一個(gè)block
一個(gè)resnet block由num_residuals個(gè)殘差塊組成
其中第一個(gè)殘差塊起到了通道數(shù)的轉(zhuǎn)換和pooling的作用
后面的若干殘差塊就是完成正常的特征提取
'''
if first_block:
assert in_channels == out_channels # 第一個(gè)模塊的輸出通道數(shù)同輸入通道數(shù)一致
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(Residual(in_channels, out_channels, use_1x1conv=True, stride=2))
else:
blk.append(Residual(out_channels, out_channels))
return nn.Sequential(*blk)
# 定義resnet模型結(jié)構(gòu)
net = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1), # TODO: 縮小感受野, 縮channel
nn.BatchNorm2d(32),
nn.ReLU())
# nn.ReLU(),
# nn.MaxPool2d(kernel_size=2, stride=2)) # TODO:去掉maxpool縮小感受野
# 然后是連續(xù)4個(gè)block
net.add_module("resnet_block1", resnet_block(32, 32, 2, first_block=True)) # TODO: channel統(tǒng)一減半
net.add_module("resnet_block2", resnet_block(32, 64, 2))
net.add_module("resnet_block3", resnet_block(64, 128, 2))
net.add_module("resnet_block4", resnet_block(128, 256, 2))
# global average pooling
net.add_module("global_avg_pool", GlobalAvgPool2d())
# fc layer
net.add_module("fc", nn.Sequential(FlattenLayer(), nn.Linear(256, 10)))
def load_data_fashion_mnist(batch_size, root='../data'):
"""Download the fashion mnist dataset and then load into memory."""
normalize = transforms.Normalize(mean=[0.28], std=[0.35])
train_augs = transforms.Compose([
transforms.RandomCrop(28, padding=2),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
test_augs = transforms.Compose([
transforms.ToTensor(),
normalize
])
mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=train_augs)
mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=test_augs)
if sys.platform.startswith('win'):
num_workers = 0 # 0表示不用額外的進(jìn)程來加速讀取數(shù)據(jù)
else:
num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_iter, test_iter
print('訓(xùn)練...')
batch_size = 64
train_iter, test_iter = load_data_fashion_mnist(batch_size, root='../data')
def evaluate_accuracy(data_iter, net, device=None):
if device is None and isinstance(net, torch.nn.Module):
# 如果沒指定device就使用net的device
device = list(net.parameters())[0].device
net.eval()
acc_sum, n = 0.0, 0
with torch.no_grad():
for X, y in data_iter:
acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
n += y.shape[0]
net.train() # 改回訓(xùn)練模式
return acc_sum / n
def train_model(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs, lr, lr_period, lr_decay):
net = net.to(device)
print("training on ", device)
loss = torch.nn.CrossEntropyLoss()
best_test_acc = 0
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
if epoch > 0 and epoch % lr_period == 0: # 每lr_period個(gè)epoch,學(xué)習(xí)率衰減一次
lr = lr * lr_decay
for param_group in optimizer.param_groups:
param_group['lr'] = lr
for X, y in train_iter:
X = X.to(device)
y = y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
optimizer.zero_grad()
l.backward()
optimizer.step()
train_l_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
% (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))
if test_acc > best_test_acc:
print('find best! save at model/best.pth')
best_test_acc = test_acc
torch.save(net.state_dict(), 'model/best.pth')
# utils.save_model({
# 'arch': args.model,
# 'state_dict': net.state_dict()
# }, 'saved-models/{}-run-{}.pth.tar'.format(args.model, run))
lr, num_epochs, lr_period, lr_decay = 0.01, 50, 5, 0.1
#optimizer = optim.Adam(net.parameters(), lr=lr)
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_model(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs, lr, lr_period, lr_decay)
print('加載最優(yōu)模型')
net.load_state_dict(torch.load('model/best.pth'))
net = net.to(device)
print('inference測試集')
net.eval()
id = 0
preds_list = []
with torch.no_grad():
for X, y in test_iter:
batch_pred = list(net(X.to(device)).argmax(dim=1).cpu().numpy())
for y_pred in batch_pred:
preds_list.append((id, y_pred))
id += 1
print('生成測試集評估文件')
with open('result.csv', 'w') as f:
f.write('ID,Prediction\n')
for id, pred in preds_list:
f.write('{},{}\n'.format(id, pred))
總結(jié)
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python函數(shù)值傳遞引用傳遞及形式參數(shù)和實(shí)際參數(shù)的區(qū)別
這篇文章主要介紹了Python函數(shù)值傳遞引用傳遞及形式參數(shù)和實(shí)際參數(shù)的區(qū)別,具有一定的參考價(jià)值,需要的小伙伴可以參考一下,希望對你的學(xué)習(xí)有所幫助2022-05-05
python忽略警告(warning)的3種方法小結(jié)
python開發(fā)中經(jīng)常遇到報(bào)錯(cuò)的情況,但是warning通常并不影響程序的運(yùn)行,而且有時(shí)特別討厭,下面我們來說下如何忽略warning錯(cuò)誤,這篇文章主要給大家介紹了關(guān)于python忽略警告(warning)的3種方法,需要的朋友可以參考下2023-10-10
Python性能加速器__slots__屬性優(yōu)化內(nèi)存使用實(shí)例探索
Python中的__slots__屬性是一個(gè)特殊的屬性,允許程序員顯式地定義類的屬性,提供了一種方式來優(yōu)化類的內(nèi)存占用和提高訪問速度,本文將深入探討__slots__屬性的概念、應(yīng)用和性能優(yōu)勢2024-01-01
python如何調(diào)用php文件中的函數(shù)詳解
這篇文章主要給大家介紹了關(guān)于python如何調(diào)用php文件中函數(shù)的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-12-12
django為Form生成的label標(biāo)簽添加class方式
這篇文章主要介紹了django為Form生成的label標(biāo)簽添加class方式,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-05-05
Python高并發(fā)解決方案實(shí)現(xiàn)過程詳解
這篇文章主要介紹了Python高并發(fā)解決方案實(shí)現(xiàn)過程詳解,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-07-07

