欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

YOLOv5小目標(biāo)切圖檢測的思路與方法

 更新時間:2022年12月20日 15:41:34   作者:Mr?Dinosaur  
目標(biāo)檢測Yolo算法是非常經(jīng)典且應(yīng)用廣泛的算法,下面這篇文章主要給大家介紹了關(guān)于YOLOv5小目標(biāo)切圖檢測的思路與方法,文中通過示例代碼介紹的非常詳細(xì),需要的朋友可以參考下

前言

當(dāng)我們在檢測較大分辨率的圖片時,對小目標(biāo)的檢測效果一直是較差的,所以就有了下面幾種方法:

  • 將圖片壓縮成大尺寸進(jìn)行訓(xùn)練( 想法:沒顯存,搞不來)
  • 添加小檢測頭(想法:P5模型還有點用,P6模型完全沒用)
  • 添加一些檢測模型和玄學(xué)機制(想法:你要是寫論文就去看看知*吧,只需要在最后面加一句:已達(dá)到工業(yè)檢測要求)
  • 切圖檢測(想法:比較耗時,過程也比較繁瑣,可以嘗試)

切圖檢測

思路:

  • 將原圖切成你想要的數(shù)量
  • 將切成的小圖進(jìn)行訓(xùn)練,得到模型
  • 將你需要檢測的圖片切成小圖,用模型檢測,并得到每張圖目標(biāo)位置的信息,保存在對應(yīng)圖片的txt文件
  • 將所有txt文件融合,得到1個txt文件,并在原圖上顯示

一:切塊

# -*- coding:utf-8 -*-
import os
import matplotlib.pyplot as plt
import cv2
import numpy as np
 
 
def divide_img(img_path, img_name, save_path):
    imgg = img_path + img_name
    img = cv2.imread(imgg)
    #   img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    h = img.shape[0]
    w = img.shape[1]
    n = int(np.floor(h * 1.0 / 1000)) + 1
    m = int(np.floor(w * 1.0 / 1000)) + 1
    print('h={},w={},n={},m={}'.format(h, w, n, m))
    dis_h = int(np.floor(h / n))
    dis_w = int(np.floor(w / m))
    num = 0
    for i in range(n):
        for j in range(m):
            num += 1
            print('i,j={}{}'.format(i, j))
            sub = img[dis_h * i:dis_h * (i + 1), dis_w * j:dis_w * (j + 1), :]
            cv2.imwrite(save_path + '{}_{}.bmp'.format(name, num), sub)
 
 
if __name__ == '__main__':
 
    img_path = r'G:\1/'
    save_path = r'G:\3/'
    img_list = os.listdir(img_path)
    for name in img_list:
        divide_img(img_path, name, save_path)

使用模型檢測后得到:

二:融合txt文件

import os
from cv2 import cv2
 
# 保存所有圖片的寬高
# todo: img_info={'name': [w_h, child_w_h, mix_row_w_h, mix_col_w_h]}
img_info = {}
all_info = {}
 
 
# 初始化img_info
def init(big_images_path, mix_percent, rows, cols):
    image_names = os.listdir(big_images_path)
    for img_name in image_names:
        big_path = big_images_path + '\\' + img_name
        # print(big_path)
        img = cv2.imread(big_path)
        size = img.shape[0:2]
        w = size[1]
        h = size[0]
        child_width = int(w) // cols
        child_height = int(h) // rows
 
        mix_row_width = int(child_width * mix_percent * 2)
        mix_row_height = child_height
 
        mix_col_width = child_width
        mix_col_height = int(child_height * mix_percent * 2)
        # 根據(jù)img保存w和h
        img_info[img_name.split('.')[0]] = [w, h, child_width, child_height, mix_row_width, mix_row_height,
                                            mix_col_width, mix_col_height]
 
 
# 讀取所有檢測出來的 小圖片的label
def get_label_info(labels_path, mix_percent, rows, cols):
    labels = os.listdir(labels_path)
    for label in labels:
        # print(label)
        # todo: type: 0正常, 1row, 2col
        # 判斷該label屬于哪一張圖片
        cur_label_belong = label.split('_')[0]
        cur_big_width = img_info[cur_label_belong][0]
        cur_big_height = img_info[cur_label_belong][1]
        # 融合區(qū)域距離邊界的一小部分寬高
        cur_row_width_step = img_info[cur_label_belong][2] * (1 - mix_percent)
        cur_col_height_step = img_info[cur_label_belong][3] * (1 - mix_percent)
        # 文件名給予數(shù)據(jù)
        # child_type = []
        # child_num = []
        # label內(nèi)容給予數(shù)據(jù)
        child_class_index = []
        child_x = []
        child_y = []
        child_width = []
        child_height = []
 
        type = -1
        num = -1
        class_index = -1
        x = 0.0
        y = 0.0
        width = 0.0
        height = 0.0
 
        # print(f'{label}')
        # 讀取所有需要的數(shù)據(jù)
        f = open(labels_path + '\\' + label, 'r')
        lines = f.read()
        # print(lines)
        f.close()
        contents = lines.split('\n')[:-1]
        # print(contents)
        for content in contents:
            content = content.split(' ')
            # print(content)
            class_index = int(content[0])
            x = float(content[1])
            y = float(content[2])
            width = float(content[3])
            height = float(content[4])
            pass
            # print(class_index, x, y, width, height)
            assert class_index != -1 or x != -1.0 or y != -1.0 or width != -1.0 or height != -1.0, \
                f'class_index:{class_index}, x:{x}, y:{y}, width:{width}, height:{height}'
            # 轉(zhuǎn)換成 數(shù)據(jù) 坐標(biāo), 并根據(jù)不同的num進(jìn)行處理
            num = label.split('_')[-1].split('.')[0]  # 圖片尾號 命名: xxxx_x.jpg  xxxx_mix_row_xx.jpg xxxx_mix_col_xx.jpg
            cur_img_width = 0
            cur_img_height = 0
            distance_x = 0
            distance_y = 0
            small_image_width = img_info[cur_label_belong][2]
            small_image_height = img_info[cur_label_belong][3]
            if label.find('mix_row') != -1:
                # type = 1.
                distance_x = int(num) % (cols-1)
                distance_y = int(num) // (rows-1)
                cur_img_width = img_info[cur_label_belong][4]
                cur_img_height = img_info[cur_label_belong][5]
                # row x 加上step
                x = x * cur_img_width + cur_row_width_step + distance_x * small_image_width
                y = y * cur_img_height + distance_y * cur_img_height
            elif label.find('mix_col') != -1:
                # type = 2
                distance_x = int(num) % cols
                distance_y = int(num) // rows
                cur_img_width = img_info[cur_label_belong][6]
                cur_img_height = img_info[cur_label_belong][7]
                # col y 加上step
                print(f'x:{x}, y:{y}, cur_img_width:{cur_img_width}, cur_img_height:{cur_img_height}')
                x = x * cur_img_width + distance_x * cur_img_width
                y = y * cur_img_height + cur_col_height_step + distance_y * small_image_height
                print(f'x:{x}, y:{y}, height:{cur_col_height_step}')
            else:
                # type = 0
                distance_x = int(num) % cols
                distance_y = int(num) // rows
                cur_img_width = img_info[cur_label_belong][2]
                cur_img_height = img_info[cur_label_belong][3]
                # 小圖片內(nèi), 無需加上 step
                x = x * cur_img_width + distance_x * cur_img_width
                y = y * cur_img_height + distance_y * cur_img_height
            assert cur_img_width != 0 or cur_img_height != 0 or distance_x != 0 or distance_y != 0, \
                f'cur_img_width:{cur_img_width}, cur_img_height:{cur_img_height}, distance_x:{distance_x}, distance_y:{distance_y}'
            assert x < cur_big_width and y < cur_big_height, f'{label}, {content}\nw:{cur_big_width}, h:{cur_big_height}, x:{x}, y:{y}'
            width = width * cur_img_width
            height = height * cur_img_height
            assert x != 0.0 or y != 0.0 or width != 0.0 or height != 0.0, f'x:{x}, y:{y}, width:{width}, height:{height}'
            # child_type.append(type)
            # child_num.append(num)
            child_class_index.append(class_index)
            child_x.append(x)
            child_y.append(y)
            child_width.append(width)
            child_height.append(height)
        # todo: 所有信息 根據(jù) cur_label_belong 存儲在all_info中
        for index, x, y, width, height in zip(child_class_index, child_x, child_y, child_width, child_height):
            if cur_label_belong not in all_info:
                all_info[cur_label_belong] = [[index, x, y, width, height]]
            else:
                all_info[cur_label_belong].append([index, x, y, width, height])
        child_class_index.clear()
        child_x.clear()
        child_y.clear()
        child_width.clear()
        child_height.clear()
 
 
# print((all_info['0342']))
# todo: 轉(zhuǎn)成 yolo 格式, 保存
def save_yolo_label(yolo_labels_path):
    for key in all_info:
        # img_path = r'G:\Unity\code_project\other_project\data\joint\big_images' + '\\' + key + '.JPG'
        # img = cv2.imread(img_path)
        yolo_label_path = yolo_labels_path + '\\' + key + '.txt'
        cur_big_width = img_info[key][0]
        cur_big_height = img_info[key][1]
        content = ''
        i = 0
        for index, x, y, width, height in all_info[key]:
            # print(all_info[key][i])
            x = x / cur_big_width
            y = y / cur_big_height
            width = width / cur_big_width
            height = height / cur_big_height
            assert x < 1.0 and y < 1.0 and width < 1.0 and height < 1.0, f'{key} {i}\n{all_info[key][i]}\nx:{x}, y:{y}, width:{width}, height:{height}'
            content += f'{index} {x} {y} {width} {height}\n'
            i += 1
        with open(yolo_label_path, 'w') as f:
            f.write(content)
 
 
def joint_main(big_images_path=r'G:\3',
               labels_path=r'G:\5',
               yolo_labels_path=r'G:\6',
               mix_percent=0.2,
               rows=4,
               cols=4):
    print(f'融合圖片, 原圖片路徑:{big_images_path}\n小圖檢測的txt結(jié)果路徑:{labels_path}\n數(shù)據(jù)融合后txt結(jié)果路徑:{yolo_labels_path}')
    init(big_images_path, mix_percent, rows, cols)
    get_label_info(labels_path, mix_percent, rows, cols)
    save_yolo_label(yolo_labels_path)
 
joint_main()

三:原圖顯示

# -*- coding: utf-8 -*-
import os
from PIL import Image
from PIL import ImageDraw, ImageFont
from cv2 import cv2
 
 
def draw_images(images_dir, txt_dir, box_dir, font_type_path):
    font = ImageFont.truetype(font_type_path, 50)
    if not os.path.exists(box_dir):
        os.makedirs(box_dir)
    # num = 0
 
    # 設(shè)置顏色
    all_colors = ['red', 'green', 'yellow', 'blue', 'pink', 'black', 'skyblue', 'brown', 'orange', 'purple', 'gray',
                  'lightpink', 'gold', 'brown', 'black']
    colors = {}
 
    for file in os.listdir(txt_dir):
        print(file)
        image = os.path.splitext(file)[0].replace('xml', 'bmp') + '.bmp'
        # 轉(zhuǎn)換成cv2讀取,防止圖片載入錯誤
        img = cv2.imread(images_dir + '/' + image)
        TURN = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = Image.fromarray(TURN)
        # img.show()
 
        if img.mode == "P":
            img = img.convert('RGB')
 
        w, h = img.size
        tag_path = txt_dir + '/' + file
        with open(tag_path) as f:
            for line in f:
                line_parts = line.split(' ')
                # 根據(jù)不同的 label 保存顏色
                if line_parts[0] not in colors.keys():
                    colors[line_parts[0]] = all_colors[len(colors.keys())]
                color = colors[line_parts[0]]
 
                draw = ImageDraw.Draw(img)
                x = (float(line_parts[1]) - 0.5 * float(line_parts[3])) * w
                y = (float(line_parts[2]) - 0.5 * float(line_parts[4])) * h
                xx = (float(line_parts[1]) + 0.5 * float(line_parts[3])) * w
                yy = (float(line_parts[2]) + 0.5 * float(line_parts[4])) * h
                draw.rectangle([x - 10, y - 10, xx, yy], fill=None, outline=color, width=5)
                # num += 1
            del draw
            img.save(box_dir + '/' + image)
        # print(file, num)
    # print(colors)
 
 
def draw_main(box_dir=r'G:\5',
              txt_dir=r'G:\6',
              image_source_dir=r'G:\3'):
    font_type_path = 'C:/Windows/Fonts/simsun.ttc'
    print(f'標(biāo)注框, 數(shù)據(jù)來源: {txt_dir}\n 被標(biāo)注圖片: {image_source_dir}\n 結(jié)果保存路徑: {box_dir}')
    draw_images(image_source_dir, txt_dir, box_dir, font_type_path)
 
 
draw_main()

效果對比:(上YOLOv5檢測,下YOLOv5+切圖檢測)

參考:

https://blog.csdn.net/qq_43622870/article/details/124984295

總結(jié)

到此這篇關(guān)于YOLOv5小目標(biāo)切圖檢測的思路與方法的文章就介紹到這了,更多相關(guān)YOLOv5小目標(biāo)切圖檢測內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • Python接口自動化之cookie、session應(yīng)用詳解

    Python接口自動化之cookie、session應(yīng)用詳解

    本文主要介紹cookie、session原理及在自動化過程中如何利用cookie、session保持會話狀態(tài)的應(yīng)用,有需要的朋友可以參考下,希望可以有所幫助
    2021-08-08
  • 在Python中使用gRPC的方法示例

    在Python中使用gRPC的方法示例

    這篇文章主要介紹了在Python中使用gRPC的方法示例,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧
    2018-08-08
  • python Event事件、進(jìn)程池與線程池、協(xié)程解析

    python Event事件、進(jìn)程池與線程池、協(xié)程解析

    這篇文章主要介紹了python Event事件、進(jìn)程池與線程池、協(xié)程解析,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下
    2019-10-10
  • 10款最佳Python開發(fā)工具推薦,每一款都是神器

    10款最佳Python開發(fā)工具推薦,每一款都是神器

    這篇文章主要介紹了10款最佳Python開發(fā)工具推薦,每一款都是神器,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧
    2020-10-10
  • pywinauto自動化操作記事本

    pywinauto自動化操作記事本

    這篇文章主要為大家詳細(xì)介紹了pywinauto自動化操作記事本,具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2019-08-08
  • Python中的并發(fā)編程asyncio庫入門使用

    Python中的并發(fā)編程asyncio庫入門使用

    這篇文章主要為大家介紹了Python中的并發(fā)編程asyncio庫入門的使用示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪
    2023-05-05
  • Python統(tǒng)計文本詞匯出現(xiàn)次數(shù)的實例代碼

    Python統(tǒng)計文本詞匯出現(xiàn)次數(shù)的實例代碼

    這篇文章主要介紹了Python統(tǒng)計文本詞匯出現(xiàn)次數(shù),這種問題在統(tǒng)計文本詞匯的次數(shù)時經(jīng)常會遇到,今天給大家分享解決方案,通過實例代碼給大家講解,需要的朋友可以參考下
    2020-02-02
  • python操作yaml說明

    python操作yaml說明

    這篇文章主要介紹了python操作yaml說明,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2020-04-04
  • 解決Python 使用h5py加載文件,看不到keys()的問題

    解決Python 使用h5py加載文件,看不到keys()的問題

    今天小編就為大家分享一篇解決Python 使用h5py加載文件,看不到keys()的問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2019-02-02
  • python+Tkinter+多線程的實例

    python+Tkinter+多線程的實例

    這篇文章主要介紹了python+Tkinter+多線程的實例,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教
    2023-05-05

最新評論