scipy.interpolate插值方法實(shí)例講解
scipy.interpolate插值方法
1 一維插值
from scipy.interpolate import interp1d
1維插值算法
from scipy.interpolate import interp1d x = np.linspace(0, 10, num=11, endpoint=True) y = np.cos(-x**2/9.0) f = interp1d(x, y) f2 = interp1d(x, y, kind='cubic') xnew = np.linspace(0, 10, num=41, endpoint=True) import matplotlib.pyplot as plt plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '--') plt.legend(['data', 'linear', 'cubic'], loc='best') plt.show()
數(shù)據(jù)點(diǎn),線性插值結(jié)果,cubic插值結(jié)果:
2 multivariate data
from scipy.interpolate import interp2d
from scipy.interpolate import griddata
多為插值方法,可以應(yīng)用在2Dlut,3Dlut的生成上面,比如當(dāng)我們已經(jīng)有了兩組RGB映射數(shù)據(jù), 可以插值得到一個(gè)查找表。
二維插值的例子如下:
import numpy as np from scipy import interpolate import matplotlib.pyplot as plt from scipy.interpolate import griddata, RegularGridInterpolator, Rbf if __name__ == "__main__": x_edges, y_edges = np.mgrid[-1:1:21j, -1:1:21j] x = x_edges[:-1, :-1] + np.diff(x_edges[:2, 0])[0] / 2. y = y_edges[:-1, :-1] + np.diff(y_edges[0, :2])[0] / 2. # x_edges, y_edges 是 20個(gè)格的邊緣的坐標(biāo), 尺寸 21 * 21 # x, y 是 20個(gè)格的中心的坐標(biāo), 尺寸 20 * 20 z = (x + y) * np.exp(-6.0 * (x * x + y * y)) print(x_edges.shape, x.shape, z.shape) plt.figure() lims = dict(cmap='RdBu_r', vmin=-0.25, vmax=0.25) plt.pcolormesh(x_edges, y_edges, z, shading='flat', **lims) # plt.pcolormesh(), plt.colorbar() 畫圖 plt.colorbar() plt.title("Sparsely sampled function.") plt.show() # 使用grid data xnew_edges, ynew_edges = np.mgrid[-1:1:71j, -1:1:71j] xnew = xnew_edges[:-1, :-1] + np.diff(xnew_edges[:2, 0])[0] / 2. # xnew其實(shí)是 height new ynew = ynew_edges[:-1, :-1] + np.diff(ynew_edges[0, :2])[0] / 2. grid_x, grid_y = xnew, ynew print(x.shape, y.shape, z.shape) points = np.hstack((x.reshape(-1, 1), y.reshape(-1, 1))) z1 = z.reshape(-1, 1) grid_z0 = griddata(points, z1, (grid_x, grid_y), method='nearest').squeeze() grid_z1 = griddata(points, z1, (grid_x, grid_y), method='linear').squeeze() grid_z2 = griddata(points, z1, (grid_x, grid_y), method='cubic').squeeze() rbf = Rbf(points[:, 0], points[:, 1], z, epsilon=2) grid_z3 = rbf(grid_x, grid_y) plt.subplot(231) plt.imshow(z.T, extent=(-1, 1, -1, 1), origin='lower') plt.plot(points[:, 0], points[:, 1], 'k.', ms=1) plt.title('Original') plt.subplot(232) plt.imshow(grid_z0.T, extent=(-1, 1, -1, 1), origin='lower') plt.title('Nearest') plt.subplot(233) plt.imshow(grid_z1.T, extent=(-1, 1, -1, 1), origin='lower', cmap='RdBu_r') plt.title('Linear') plt.subplot(234) plt.imshow(grid_z2.T, extent=(-1, 1, -1, 1), origin='lower') plt.title('Cubic') plt.subplot(235) plt.imshow(grid_z3.T, extent=(-1, 1, -1, 1), origin='lower') plt.title('rbf') plt.gcf().set_size_inches(8, 6) plt.show()
示例2:
def func(x, y): return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2 grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j] rng = np.random.default_rng() points = rng.random((1000, 2)) values = func(points[:,0], points[:,1]) from scipy.interpolate import griddata grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest') grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear') grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic') import matplotlib.pyplot as plt plt.subplot(221) plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower') plt.plot(points[:,0], points[:,1], 'k.', ms=1) plt.title('Original') plt.subplot(222) plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower') plt.title('Nearest') plt.subplot(223) plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower') plt.title('Linear') plt.subplot(224) plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower') plt.title('Cubic') plt.gcf().set_size_inches(6, 6) plt.show()
3 Multivariate data interpolation on a regular grid
from scipy.interpolate import RegularGridInterpolator
已知一些grid上的值。
可以應(yīng)用在2Dlut,3Dlut,當(dāng)我們已經(jīng)有了一個(gè)多維查找表,然后整個(gè)圖像作為輸入,得到查找和插值后的輸出。
二維網(wǎng)格插值方法(好像和resize的功能比較一致)
# 使用RegularGridInterpolator import matplotlib.pyplot as plt from scipy.interpolate import RegularGridInterpolator def F(u, v): return u * np.cos(u * v) + v * np.sin(u * v) fit_points = [np.linspace(0, 3, 8), np.linspace(0, 3, 8)] values = F(*np.meshgrid(*fit_points, indexing='ij')) ut, vt = np.meshgrid(np.linspace(0, 3, 80), np.linspace(0, 3, 80), indexing='ij') true_values = F(ut, vt) test_points = np.array([ut.ravel(), vt.ravel()]).T interp = RegularGridInterpolator(fit_points, values) fig, axes = plt.subplots(2, 3, figsize=(10, 6)) axes = axes.ravel() fig_index = 0 for method in ['linear', 'nearest', 'linear', 'cubic', 'quintic']: im = interp(test_points, method=method).reshape(80, 80) axes[fig_index].imshow(im) axes[fig_index].set_title(method) axes[fig_index].axis("off") fig_index += 1 axes[fig_index].imshow(true_values) axes[fig_index].set_title("True values") fig.tight_layout() fig.show() plt.show()
4 Rbf 插值方法
interpolate scattered 2-D data
import numpy as np from scipy.interpolate import Rbf import matplotlib.pyplot as plt from matplotlib import cm # 2-d tests - setup scattered data rng = np.random.default_rng() x = rng.random(100) * 4.0 - 2.0 y = rng.random(100) * 4.0 - 2.0 z = x * np.exp(-x ** 2 - y ** 2) edges = np.linspace(-2.0, 2.0, 101) centers = edges[:-1] + np.diff(edges[:2])[0] / 2. XI, YI = np.meshgrid(centers, centers) # use RBF rbf = Rbf(x, y, z, epsilon=2) Z1 = rbf(XI, YI) points = np.hstack((x.reshape(-1, 1), y.reshape(-1, 1))) Z2 = griddata(points, z, (XI, YI), method='cubic').squeeze() # plot the result plt.figure(figsize=(20,8)) plt.subplot(1, 2, 1) X_edges, Y_edges = np.meshgrid(edges, edges) lims = dict(cmap='RdBu_r', vmin=-0.4, vmax=0.4) plt.pcolormesh(X_edges, Y_edges, Z1, shading='flat', **lims) plt.scatter(x, y, 100, z, edgecolor='w', lw=0.1, **lims) plt.title('RBF interpolation - multiquadrics') plt.xlim(-2, 2) plt.ylim(-2, 2) plt.colorbar() plt.subplot(1, 2, 2) X_edges, Y_edges = np.meshgrid(edges, edges) lims = dict(cmap='RdBu_r', vmin=-0.4, vmax=0.4) plt.pcolormesh(X_edges, Y_edges, Z2, shading='flat', **lims) plt.scatter(x, y, 100, z, edgecolor='w', lw=0.1, **lims) plt.title('griddata - cubic') plt.xlim(-2, 2) plt.ylim(-2, 2) plt.colorbar() plt.show()
得到結(jié)果如下, RBF一定程度上和 griddata可以互用, griddata方法比較通用
[1]https://docs.scipy.org/doc/scipy/tutorial/interpolate.html
到此這篇關(guān)于scipy.interpolate插值方法介紹的文章就介紹到這了,更多相關(guān)scipy.interpolate插值內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python設(shè)計(jì)模式中的結(jié)構(gòu)型橋接模式
這篇文章主要介紹了Python設(shè)計(jì)模式中的結(jié)構(gòu)型橋接模式,橋接模式即Bridge?Pattern,將抽象部分與它的實(shí)現(xiàn)部分分離,使它們都可以獨(dú)立地變化.下面來看看文章的詳細(xì)內(nèi)容介紹吧2022-02-02Python腳本實(shí)現(xiàn)下載合并SAE日志
這篇文章主要介紹了Python腳本實(shí)現(xiàn)下載合并SAE日志,本文講解了代碼編寫過程,然后給出了完整代碼,需要的朋友可以參考下2015-02-02python數(shù)據(jù)抓取分析的示例代碼(python + mongodb)
本篇文章主要介紹了python數(shù)據(jù)抓取分析的示例代碼(python + mongodb),小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過來看看吧2017-12-12Python K最近鄰從原理到實(shí)現(xiàn)的方法
這篇文章主要介紹了Python K最近鄰從原理到實(shí)現(xiàn)的方法,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2019-08-08Python基于遞歸算法實(shí)現(xiàn)的走迷宮問題
這篇文章主要介紹了Python基于遞歸算法實(shí)現(xiàn)的走迷宮問題,結(jié)合迷宮問題簡單分析了Python遞歸算法的定義與使用技巧,需要的朋友可以參考下2017-08-08