Python實現(xiàn)從網(wǎng)絡攝像頭拉流的方法分享
摘要
本文介紹幾種從攝像頭拉流的方法。
1、直接使用OpenCV
直接使用opencv的cv2.VideoCapture直接讀取rtsp視頻流,但是這樣做的缺點是延遲嚴重、出現(xiàn)掉幀、花屏現(xiàn)象等,原因在于opencv自己有一個緩存,每次會順序從自己的緩存中讀取,而不是直接讀取最新幀。
代碼如下:
import cv2 import datetime def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) user_name, user_pwd = "admin", "1234" ca_ip="192.168.1.100" channel=2 cap = cv2.VideoCapture("rtsp://%s:%s@%s//Streaming/Channels/%d" \ % (user_name, user_pwd, ca_ip, channel)) if cap.isOpened(): print("Opened") while cap.isOpened(): ret, frame = cap.read() cv2.imwrite("opencv_"+time_str() + ".jpg", frame)
2、使用ffmpeg
FFmpeg是一套強大的視頻、音頻處理程序,也是很多視頻處理軟件的基礎 。但是FFmpeg的命令行使用起來有一定的學習成本。而ffmpeg-python就是解決FFmpeg學習成本的問題,讓開發(fā)者使用python就可以調用FFmpeg的功能,既減少了學習成本,也增加了代碼的可讀性。
github地址:https://github.com/kkroening/ffmpeg-python
2.1、安裝方法
2.1.1、安裝ffmpeg-python
ffmpeg-python可以通過典型的 pip 安裝獲取最新版本(注意:是ffmpeg-python,不要寫成了python-ffmpeg):
pip install ffmpeg-python
或者可以從本地克隆和安裝源:
git clone git@github.com:kkroening/ffmpeg-python.git pip install -e ./ffmpeg-python
2.1.2、安裝FFmpeg
使用該庫,需要自行安裝FFmpeg,如果電腦已經(jīng)安裝了,可以忽略本步驟。這里推薦直接使用conda進行安裝,可以省下很多麻煩,其他的安裝方式自行百度。
conda install ffmpeg
2.2、代碼實現(xiàn)
使用ffmpeg讀取rtsp流并轉換成numpy array,并使用cv2.imwrite保存。
import ffmpeg import numpy as np import cv2 import datetime def main(source): args = { "rtsp_transport": "tcp", "fflags": "nobuffer", "flags": "low_delay" } # 添加參數(shù) probe = ffmpeg.probe(source) cap_info = next(x for x in probe['streams'] if x['codec_type'] == 'video') print("fps: {}".format(cap_info['r_frame_rate'])) width = cap_info['width'] # 獲取視頻流的寬度 height = cap_info['height'] # 獲取視頻流的高度 up, down = str(cap_info['r_frame_rate']).split('/') fps = eval(up) / eval(down) print("fps: {}".format(fps)) # 讀取可能會出錯錯誤 process1 = ( ffmpeg .input(source, **args) .output('pipe:', format='rawvideo', pix_fmt='rgb24') .overwrite_output() .run_async(pipe_stdout=True) ) while True: in_bytes = process1.stdout.read(width * height * 3) # 讀取圖片 if not in_bytes: break # 轉成ndarray in_frame = ( np .frombuffer(in_bytes, np.uint8) .reshape([height, width, 3]) ) frame = cv2.cvtColor(in_frame, cv2.COLOR_RGB2BGR) # 轉成BGR # cv2.imshow(time_str(), frame) cv2.imwrite(time_str()+".jpg", frame) # if cv2.waitKey(1) == ord('q'): # break process1.kill() # 關閉 def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) if __name__ == "__main__": # rtsp流需要換成自己的 user_name, user_pwd = "admin", "1234" ca_ip = "192.168.1.168" channel = 2 alhua_rtsp="rtsp://%s:%s@%s//Streaming/Channels/%d" \ % (user_name, user_pwd, ca_ip, channel) main(alhua_rtsp)
3、多線程的方式讀取圖片
采用多線程的方式,新開一個線程,利用變量、隊列等方式保存最新幀,使得每次都讀取最新幀,而不是opencv自己緩存中的順序幀,不會延遲,不會花屏了,代碼如下:
import cv2 import threading import sys import datetime def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) class RTSCapture(cv2.VideoCapture): _cur_frame = None _reading = False schemes = ["rtsp://","rtmp://"] @staticmethod def create(url, *schemes): rtscap = RTSCapture(url) rtscap.frame_receiver = threading.Thread(target=rtscap.recv_frame, daemon=True) rtscap.schemes.extend(schemes) if isinstance(url, str) and url.startswith(tuple(rtscap.schemes)): rtscap._reading = True elif isinstance(url, int): pass return rtscap def isStarted(self): ok = self.isOpened() if ok and self._reading: ok = self.frame_receiver.is_alive() return ok def recv_frame(self): while self._reading and self.isOpened(): ok, frame = self.read() if not ok: break self._cur_frame = frame self._reading = False def read2(self): frame = self._cur_frame self._cur_frame = None return frame is not None, frame def start_read(self): self.frame_receiver.start() self.read_latest_frame = self.read2 if self._reading else self.read def stop_read(self): self._reading = False if self.frame_receiver.is_alive(): self.frame_receiver.join() if __name__ == '__main__': user_name, user_pwd = "admin", "1234" ca_ip = "192.168.1.100" channel = 2 alhua_rtsp="rtsp://%s:%s@%s//Streaming/Channels/%d" \ % (user_name, user_pwd, ca_ip, channel) rtscap = RTSCapture.create(alhua_rtsp) rtscap.start_read() while rtscap.isStarted(): ok, frame = rtscap.read_latest_frame() # if cv2.waitKey(100) & 0xFF == ord('q'): # break if not ok: continue # inhere # cv2.imshow(time_str(), frame) cv2.imwrite(time_str() + ".jpg", frame) rtscap.stop_read() rtscap.release() cv2.destroyAllWindows()
運行結果:
4、多進程的方式拉流
使用Python3自帶的多進程模塊,創(chuàng)建一個隊列,進程A從通過rtsp協(xié)議從視頻流中讀取出每一幀,并放入隊列中,進程B從隊列中將圖片取出,處理后進行顯示。進程A如果發(fā)現(xiàn)隊列里有兩張圖片(證明進程B的讀取速度跟不上進程A),那么進程A主動將隊列里面的舊圖片刪掉,換上新圖片。通過多線程的方法:
代碼如下:
import cv2 import multiprocessing as mp import time import datetime def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) def image_put(q, user, pwd, ip, channel=1): cap = cv2.VideoCapture("rtsp://%s:%s@%s//Streaming/Channels/%d" % (user, pwd, ip, channel)) if cap.isOpened(): print('HIKVISION') else: cap = cv2.VideoCapture("rtsp://%s:%s@%s/cam/realmonitor?channel=%d&subtype=0" % (user, pwd, ip, channel)) print('DaHua') while True: q.put(cap.read()[1]) q.get() if q.qsize() > 1 else time.sleep(0.01) def image_get(q, window_name): # cv2.namedWindow(window_name, flags=cv2.WINDOW_FREERATIO) while True: frame = q.get() # cv2.imshow(window_name, frame) # cv2.waitKey(1) cv2.imwrite("opencv_"+time_str() + ".jpg", frame) cv2.waitKey(1) def run_single_camera(): user_name, user_pwd, camera_ip = "admin", "admin123456", "192.168.35.121" mp.set_start_method(method='spawn') # init queue = mp.Queue(maxsize=2) processes = [mp.Process(target=image_put, args=(queue, user_name, user_pwd, camera_ip)), mp.Process(target=image_get, args=(queue, camera_ip))] [process.start() for process in processes] [process.join() for process in processes] def run_multi_camera(): # user_name, user_pwd = "admin", "password" user_name, user_pwd = "admin", "1234" camera_ip_l = [ "192.168.1.XX3", # ipv4 "192.168.1.XX2", "192.168.1.XX1", ] mp.set_start_method(method='spawn') # init queues = [mp.Queue(maxsize=90) for _ in camera_ip_l] processes = [] for queue, camera_ip in zip(queues, camera_ip_l): processes.append(mp.Process(target=image_put, args=(queue, user_name, user_pwd, camera_ip))) processes.append(mp.Process(target=image_get, args=(queue, camera_ip))) for process in processes: process.daemon = True process.start() for process in processes: process.join() if __name__ == '__main__': # run_single_camera() run_multi_camera() pass
到此這篇關于Python實現(xiàn)從網(wǎng)絡攝像頭拉流的方法分享的文章就介紹到這了,更多相關Python網(wǎng)絡攝像頭拉流內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
相關文章
python中csv文件創(chuàng)建、讀取及修改等操作實例
很多程序在處理數(shù)據(jù)時都會碰到csv這種格式的文件,下面這篇文章主要給大家介紹了關于python中csv文件創(chuàng)建、讀取及修改等操作的相關資料,文中通過實例代碼介紹的非常詳細,需要的朋友可以參考下2022-05-05Python使用numpy模塊創(chuàng)建數(shù)組操作示例
這篇文章主要介紹了Python使用numpy模塊創(chuàng)建數(shù)組操作,結合實例形式分析了Python使用numpy模塊實現(xiàn)數(shù)組的創(chuàng)建、賦值、修改、打印等相關操作技巧與注意事項,需要的朋友可以參考下2018-06-06Python MySQLdb 使用utf-8 編碼插入中文數(shù)據(jù)問題
這篇文章主要介紹了Python MySQLdb 使用utf-8 編碼插入中文數(shù)據(jù)問題,需要的朋友可以參考下2018-03-03