pytorch transform數(shù)據(jù)處理轉(zhuǎn)c++問題
pytorch transform數(shù)據(jù)處理轉(zhuǎn)c++
python推理代碼轉(zhuǎn)c++ sdk過程遇到pytorch數(shù)據(jù)處理的轉(zhuǎn)換
1.python代碼
import torch from PIL import Image from torchvision import transforms data_transform = transforms.Compose( ? ? ?[transforms.Resize(256), ? ? ? transforms.CenterCrop(224), ? ? ? transforms.ToTensor(), ? ? ? transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) ?img = Image.open(img_path) ?img = data_transform(img)
2.transforms.Resize(256)
Parameters
size (sequence or int) –
Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
3.transforms.ToTensor()
Convert a PIL Image or numpy.ndarray to tensor. This transform does not support torchscript.
Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8
cv::Mat ClsSixPrivate::processImage(cv::Mat &img) { ?? ?int inW = img.cols; ?? ?int inH = img.rows; ?? ?cv::Mat croped_image; ?? ?if (inW > inH) ?? ?{ ?? ??? ?int newWidth = 256 * inW / inH; ?? ??? ?cv::resize(img, img, cv::Size(newWidth, 256), 0, 0, cv::INTER_LINEAR); ?? ??? ?croped_image = img(cv::Rect((newWidth - 224) / 2, 16, 224, 224)).clone(); ?? ?} ?? ?else { ?? ??? ?int newHeight= 256 * inH / inW; ?? ??? ?cv::resize(img, img, cv::Size(256, newHeight), 0, 0, cv::INTER_LINEAR); ?? ??? ?croped_image = img(cv::Rect(16, (newHeight - 224) / 2, 224, 224)).clone(); ?? ?} ?? ? ?? ?std::vector<float> mean_value{ 0.485, 0.456,0.406 }; ?? ?std::vector<float> std_value{ 0.229, 0.224, 0.225 };? ?? ?cv::Mat dst; ?? ?std::vector<cv::Mat> rgbChannels(3); ?? ?cv::split(croped_image, rgbChannels); ?? ?for (auto i = 0; i < rgbChannels.size(); i++) ?? ?{ ?? ??? ?rgbChannels[i].convertTo(rgbChannels[i], CV_32FC1, 1.0 / (std_value[i] * 255.0), (0.0 - mean_value[i]) / std_value[i]); ?? ?} ?? ?cv::merge(rgbChannels, dst); ?? ?return dst; }
總結(jié)
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python中Django與Echarts的結(jié)合用法圖文詳解
ECharts是一個第三方控件,下面這篇文章主要給大家介紹了關(guān)于Python中Django與Echarts的結(jié)合用法,文中通過圖文介紹的非常詳細(xì),需要的朋友可以參考下2022-10-10pytorch 實現(xiàn)將自己的圖片數(shù)據(jù)處理成可以訓(xùn)練的圖片類型
今天小編就為大家分享一篇pytorch 實現(xiàn)將自己的圖片數(shù)據(jù)處理成可以訓(xùn)練的圖片類型,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-01-01python os.path.isfile 的使用誤區(qū)詳解
今天小編就為大家分享一篇python os.path.isfile 的使用誤區(qū)詳解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-11-11