numpy求矩陣的特征值與特征向量(np.linalg.eig函數(shù)用法)
求矩陣的特征值與特征向量(np.linalg.eig)
語法
np.linalg.eig(a)
功能
Compute the eigenvalues and right eigenvectors of a square array.
求方陣(n x n
)的特征值與右特征向量
Parameters
a : (…, M, M) array
Matrices for which the eigenvalues and right eigenvectors will be computed
a是一個矩陣Matrix
的數(shù)組。每個矩陣M
都會被計算其特征值與特征向量。
Returns
w : (…, M) array
The eigenvalues, each repeated according to its multiplicity.
The eigenvalues are not necessarily ordered. The resulting array will be of complex type, unless the imaginary part is zero in which case it will be cast to a real type. Whena
is real the resulting eigenvalues will be real (0 imaginary part) or occur in conjugate pairs
返回的w
是其特征值。特征值不會特意進行排序。返回的array一般都是復(fù)數(shù)形式,除非虛部為0,會被cast為實數(shù)。當(dāng)a
是實數(shù)類型時,返回的就是實數(shù)。
v : (…, M, M) array
The normalized (unit “length”) eigenvectors, such that the column
v[:,i]
is the eigenvector corresponding to the eigenvaluew[i]
.
返回的v
是歸一化后的特征向量(length
為1)。特征向量v[:,i]
對應(yīng)特征值w[i]
。
Raises
LinAlgError
If the eigenvalue computation does not converge.
Ralated Function:
See Also
eigvals : eigenvalues of a non-symmetric array.
eigh : eigenvalues and eigenvectors of a real symmetric or complex Hermitian (conjugate symmetric) array.
eigvalsh : eigenvalues of a real symmetric or complex Hermitian (conjugate symmetric) array.
scipy.linalg.eig : Similar function in SciPy that also solves the generalized eigenvalue problem.
scipy.linalg.schur : Best choice for unitary and other non-Hermitian normal matrices.
相關(guān)的函數(shù)有:
eigvals
:計算非對稱矩陣的特征值eigh
:實對稱矩陣或者復(fù)共軛對稱矩陣(Hermitian
)的特征值與特征向量eigvalsh
: 實對稱矩陣或者復(fù)共軛對稱矩陣(Hermitian
)的特征值與特征向量scipy.linalg.eig
scipy.linalg.schur
Notes
… versionadded:: 1.8.0
Broadcasting rules apply, see the
numpy.linalg
documentation for details.This is implemented using the
_geev
LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays.The number
w
is an eigenvalue ofa
if there exists a vectorv
such thata @ v = w * v
. Thus, the arraysa
,w
, andv
satisfy the equationsa @ v[:,i] = w[i] * v[:,i]
for :math:i \\in \\{0,...,M-1\\}
.The array
v
of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent anda
can be diagonalized by a similarity transformation usingv
, i.e,inv(v) @ a @ v
is diagonal.For non-Hermitian normal matrices the SciPy function
scipy.linalg.schur
is preferred because the matrixv
is guaranteed to be unitary, which is not the case when usingeig
. The Schur factorization produces an upper triangular matrix rather than a diagonal matrix, but for normal matrices only the diagonal of the upper triangular matrix is needed, the rest is roundoff error.Finally, it is emphasized that
Referencesv
consists of the right (as in right-hand side) eigenvectors ofa
. A vectory
satisfyingy.T @ a = z * y.T
for some numberz
is called a left eigenvector ofa
, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other.G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL,
Academic Press, Inc., 1980, Various pp.
需要說明的是,特征向量之間可能存在線性相關(guān)關(guān)系,即返回的v可能不是滿秩的。但如果特征值都不同的話,理論上來說,所有特征向量都是線性無關(guān)的。
此時可以利用inv(v)@ a @ v
來計算特征值的對角矩陣(對角線上的元素是特征值,其余元素為0),同時可以用v @ diag(w) @ inv(v)
來恢復(fù)a。
同時需要說明的是,這里得到的特征向量都是右特征向量。
即 Ax=λx
Examples
>>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([1., 2., 3.]) array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([1.+1.j, 1.-1.j]) array([[0.70710678+0.j , 0.70710678-0.j ], [0. -0.70710678j, 0. +0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that ``a.conj().T == a``, i.e., `a` is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([2.+0.j, 0.+0.j]) array([[ 0. +0.70710678j, 0.70710678+0.j ], # may vary [ 0.70710678+0.j , -0. +0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([1., 1.]) array([[1., 0.], [0., 1.]])
總結(jié)
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
關(guān)于pycharm中pip版本10.0無法使用的解決辦法
近期在利用 pycharm 安裝第三方庫時會提示 pip 不是最新版本, 因此對 pip 進行更新,但是生成最新版本之后, pip 中由于缺少 main 函數(shù),導(dǎo)致在 pycharm 中無法自動安裝第三方庫。本文就介紹一下如何解決2019-10-10Pandas中KeyError: 'Column_Name' not
在使用Pandas進行數(shù)據(jù)處理時,KeyError: 'Column_Name' not in index是一種常見的錯誤,它通常發(fā)生在嘗試訪問DataFrame中不存在的列名時,本文將深入分析這一錯誤的原因、提供解決辦法,需要的朋友可以參考下2024-07-07根據(jù)DataFrame某一列的值來選擇具體的某一行方法
今天小編就為大家分享一篇根據(jù)DataFrame某一列的值來選擇具體的某一行方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-07-07