使用golang-unsafe包的注意事項及說明
基于golang 15.5
總結(詳細的內容可以往下看)
1.不能使用unsafe包里的ArbitraryType類型
2.Pointer類型可以表示任意類型的指針,所以可以用Pointer類型作為中介進行兩種不同類型指針的轉換,為保證作為中介的Pointer類型數(shù)據(jù)有效,必須保證所有轉換在同一個表達式中,如:
func Float64bits(f float64) uint64 { return *(*uint64)(unsafe.Pointer(&f)) }
3.Pointer類型可以安全有效的轉換成uintptr,不能以任何形式(包含變量)保存轉換后的uintptr值,轉換后的uintptr值僅在轉換所在的表達式中有效的。
4.因為uintptr只是內存地址值,并沒有指針語義,所以uintptr轉換成Pointer通常不會是有效的
下面列舉有效的轉換方式:
1:在同一個表達式內,對Pointer轉換成的uintptr值進行算術運算(包括加減偏移量等,和c不同,指向初始分配內存的end邊界點是無效的),然后在轉換回Pointer
2:使用syscall.Syscall. syscall包的Syscall函數(shù)直接將uintptr傳遞給操作系統(tǒng),根據(jù)調用的細節(jié),會將他們中的一些重新轉換為指針,系統(tǒng)調用將會隱式轉換uintptr成pointer,如果一個指針作為函數(shù)的實參,而對應的形參是uintptr,那這個轉換必須寫在調用函數(shù)的表達式上,如
syscall.Syscall(SYS_READ, uintptr(fd), uintptr(unsafe.Pointer(p)), uintptr(n))
3:反射包的Value類型的方法Pointer()和UnsafeAddr()返回uintptr而不是unsafe.Pointer,以防止在沒有導入unsafe包情況下,調用者將結果更改為任意類型。但是這意味著結果是不穩(wěn)定的,必須在調用后立即在同一表達式中將其轉換為Pointer,如:
p := (*int)(unsafe.Pointer(reflect.ValueOf(new(int)).Pointer()))
4:反射包的結構體SliceHeader和StringHeader將字段Data聲明為uintptr,以防止調用者在不沒有導入unsafe包的情況下將結果更改為任意類型。
但是,這意味著SliceHeader和StringHeader僅在解釋實際切片或字符串值的內容時才有效。如:
var s string hdr := (*reflect.StringHeader)(unsafe.Pointer(&s)) // case 1 hdr.Data = uintptr(unsafe.Pointer(p)) // case 6 (this case) hdr.Len = n
詳細內容
1.ArbitraryType類型在本文檔里表示任意一種類型,但并非一個實際存在于unsafe包的類型。
2.Pointer類型用于表示任意類型的指針。有4個特殊的只能用于Pointer類型的操作:
- 任意類型的指針可以轉換為一個Pointer類型值
- 一個Pointer類型值可以轉換為任意類型的指針
- 一個uintptr類型值可以轉換為一個Pointer類型值
- 一個Pointer類型值可以轉換為一個uintptr類型值
因此,Pointer類型允許程序繞過類型系統(tǒng)讀寫任意內存。使用它時必須謹慎。
3.以下使用Pointer類型的示范操作都能確保所使用的Pointer是有效的,不遵循這些示范的操作在后續(xù)的golang版本的迭代中不保證操作包含的Pointer是有效的
Conversion of a *T1 to Pointer to *T2
Sizeof(T2)必須小于等于Sizeof(T1),下面是例子
func Float64bits(f float64) uint64 { return *(*uint64)(unsafe.Pointer(&f)) }
Conversion of a Pointer to a uintptr (but not back to Pointer)
將Pointer轉換成uintptr會用Pointer產(chǎn)生一個不帶指針語義的整數(shù)值并賦值給uintptr,這個整數(shù)值是一個內存地址值,盡管是內存地址值,但是當這個內存地址對應的對象被移動至其他內存區(qū)域或者對應的對象被回收時,gc并不會更新這個值,所以將一個uintptr轉換成Pointer通常不會是有效的,下面列舉了將uintptr轉換成Pointer有效的幾種方式
Conversion of a Pointer to a uintptr and back, with arithmetic.
這種方式通常用于獲取結構體字段值或者數(shù)組元素值,下面是例子
p = unsafe.Pointer(uintptr(p) + offset) // equivalent to f := unsafe.Pointer(&s.f) f := unsafe.Pointer(uintptr(unsafe.Pointer(&s)) + unsafe.Offsetof(s.f)) // equivalent to e := unsafe.Pointer(&x[i]) e := unsafe.Pointer(uintptr(unsafe.Pointer(&x[0])) + i*unsafe.Sizeof(x[0]))
使用這種方式對指針進行加減偏移量(即±Offsetof)也是有效的,對指針進行&^操作也是有效的,通常用于對齊。
所有的方式,結果都必須指向最初被分配的對象。
和c不同,指向初始分配內存的end邊界點是無效的,下面是例子
// INVALID: end points outside allocated space. var s thing end = unsafe.Pointer(uintptr(unsafe.Pointer(&s)) + unsafe.Sizeof(s)) // INVALID: end points outside allocated space. b := make([]byte, n) end = unsafe.Pointer(uintptr(unsafe.Pointer(&b[0])) + uintptr(n))
所有的轉換都必須在相同的表達式內,他們之間也只能有算術操作,下面是無效的例子
// INVALID: uintptr cannot be stored in variable // before conversion back to Pointer. u := uintptr(p) p = unsafe.Pointer(u + offset)
指針必須指向一個已分配的對象,這樣才不會接觸到nil指針,下面是無效的例子
// INVALID: conversion of nil pointer u := unsafe.Pointer(nil) p := unsafe.Pointer(uintptr(u) + offset)
Conversion of a Pointer to a uintptr when calling syscall.Syscall.
syscall包的Syscall函數(shù)直接將uintptr傳遞給操作系統(tǒng),根據(jù)調用的細節(jié),會將他們中的一些重新轉換為指針,系統(tǒng)調用將會隱式轉換uintptr成pointer,如果一個指針作為函數(shù)的實參,而對應的形參是uintptr,那這個轉換必須寫在調用函數(shù)的表達式上,下面是例子
syscall.Syscall(SYS_READ, uintptr(fd), uintptr(unsafe.Pointer(p)), uintptr(n))
編譯器通過安排,保留所引用的分配對象(如果有的話),并且在調用完成之前不會移動分配的對象,在匯編中實現(xiàn)的函數(shù)調用的參數(shù)列表中將Pointer轉換為uintptr,即使從類型本身來看,在調用過程中不再需要該對象。為了編譯器能識別這種轉換,轉換表達式必須顯式出現(xiàn)在實參列表中。下面是錯誤的例子:
// INVALID: uintptr cannot be stored in variable // before implicit conversion back to Pointer during system call. u := uintptr(unsafe.Pointer(p)) syscall.Syscall(SYS_READ, uintptr(fd), u, uintptr(n)
Conversion of the result of reflect.Value.Pointer or reflect.Value.UnsafeAddr from uintptr to Pointer.
反射包的Value類型的方法Pointer()和UnsafeAddr()返回uintptr而不是unsafe.Pointer,以防止在沒有導入unsafe包情況下,調用者將結果更改為任意類型。
但是這意味著結果是不穩(wěn)定的,必須在調用后立即在同一表達式中將其轉換為Pointer,下面是正確的例子:
p := (*int)(unsafe.Pointer(reflect.ValueOf(new(int)).Pointer()))
與上面的例子相反,在轉換前用變量保存結果(反射包的Value類型的方法Pointer()和UnsafeAddr()的返回值)是無效的,下面是例子:
// INVALID: uintptr cannot be stored in variable // before conversion back to Pointer. u := reflect.ValueOf(new(int)).Pointer() p := (*int)(unsafe.Pointer(u))
Conversion of a reflect.SliceHeader or reflect.StringHeader Data field to or from Pointer.
與前面的情況一樣,反射包的結構體SliceHeader和StringHeader將字段Data聲明為uintptr,以防止調用者在不沒有導入unsafe包的情況下將結果更改為任意類型。
但是,這意味著SliceHeader和StringHeader僅在解釋實際切片或字符串值的內容時才有效。下面是例子:
var s string hdr := (*reflect.StringHeader)(unsafe.Pointer(&s)) // case 1 hdr.Data = uintptr(unsafe.Pointer(p)) // case 6 (this case) hdr.Len = n
在這種用法中,hdr.Data實際上是引用字符串基礎指針的替代方法,而不是uintptr變量本身。
通常,reflect.SliceHeader和reflect.StringHeader只能用作*reflect.SliceHeader和*reflect.StringHeader指向實際的切片或字符串的情況,而不能用作普通結構體。
程序不應聲明或分配這些結構體類型的變量。下面是無效的例子:
// INVALID: a directly-declared header will not hold Data as a reference. var hdr reflect.StringHeader hdr.Data = uintptr(unsafe.Pointer(p)) hdr.Len = n s := *(*string)(unsafe.Pointer(&hdr)) // p possibly already lost
最后是unsafe包提供的幾種方法的解釋:
// Sizeof 返回類型v本身數(shù)據(jù)所占用的字節(jié)數(shù)。 // 返回值是“頂層”的數(shù)據(jù)占有的字節(jié)數(shù)。 // 例如,若v是一個切片,它會返回該切片描述符的大小, // 而非該切片底層引用的內存的大小。 func Sizeof(x ArbitraryType) uintptr // Offsetof 返回類型v所代表的結構體字段在結構體中的偏移量, // 它必須為結構體類型的字段的形式。 // 換句話說,它返回該結構起始處與該字段起始處之間的字節(jié)數(shù)。 func Offsetof(x ArbitraryType) uintptr // Alignof 返回類型v的對齊方式(即類型v在內存中占用的字節(jié)數(shù)); // 若是結構體類型的字段的形式,它會返回字段f在該結構體中的對齊方式。 func Alignof(x ArbitraryType) uintptr
以下是unsafe.go的原內容
// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. /* Package unsafe contains operations that step around the type safety of Go programs. Packages that import unsafe may be non-portable and are not protected by the Go 1 compatibility guidelines. */ package unsafe // ArbitraryType is here for the purposes of documentation only and is not actually // part of the unsafe package. It represents the type of an arbitrary Go expression. type ArbitraryType int // Pointer represents a pointer to an arbitrary type. There are four special operations // available for type Pointer that are not available for other types: // - A pointer value of any type can be converted to a Pointer. // - A Pointer can be converted to a pointer value of any type. // - A uintptr can be converted to a Pointer. // - A Pointer can be converted to a uintptr. // Pointer therefore allows a program to defeat the type system and read and write // arbitrary memory. It should be used with extreme care. // // The following patterns involving Pointer are valid. // Code not using these patterns is likely to be invalid today // or to become invalid in the future. // Even the valid patterns below come with important caveats. // // Running "go vet" can help find uses of Pointer that do not conform to these patterns, // but silence from "go vet" is not a guarantee that the code is valid. // // (1) Conversion of a *T1 to Pointer to *T2. // // Provided that T2 is no larger than T1 and that the two share an equivalent // memory layout, this conversion allows reinterpreting data of one type as // data of another type. An example is the implementation of // math.Float64bits: // // func Float64bits(f float64) uint64 { // return *(*uint64)(unsafe.Pointer(&f)) // } // // (2) Conversion of a Pointer to a uintptr (but not back to Pointer). // // Converting a Pointer to a uintptr produces the memory address of the value // pointed at, as an integer. The usual use for such a uintptr is to print it. // // Conversion of a uintptr back to Pointer is not valid in general. // // A uintptr is an integer, not a reference. // Converting a Pointer to a uintptr creates an integer value // with no pointer semantics. // Even if a uintptr holds the address of some object, // the garbage collector will not update that uintptr's value // if the object moves, nor will that uintptr keep the object // from being reclaimed. // // The remaining patterns enumerate the only valid conversions // from uintptr to Pointer. // // (3) Conversion of a Pointer to a uintptr and back, with arithmetic. // // If p points into an allocated object, it can be advanced through the object // by conversion to uintptr, addition of an offset, and conversion back to Pointer. // // p = unsafe.Pointer(uintptr(p) + offset) // // The most common use of this pattern is to access fields in a struct // or elements of an array: // // // equivalent to f := unsafe.Pointer(&s.f) // f := unsafe.Pointer(uintptr(unsafe.Pointer(&s)) + unsafe.Offsetof(s.f)) // // // equivalent to e := unsafe.Pointer(&x[i]) // e := unsafe.Pointer(uintptr(unsafe.Pointer(&x[0])) + i*unsafe.Sizeof(x[0])) // // It is valid both to add and to subtract offsets from a pointer in this way. // It is also valid to use &^ to round pointers, usually for alignment. // In all cases, the result must continue to point into the original allocated object. // // Unlike in C, it is not valid to advance a pointer just beyond the end of // its original allocation: // // // INVALID: end points outside allocated space. // var s thing // end = unsafe.Pointer(uintptr(unsafe.Pointer(&s)) + unsafe.Sizeof(s)) // // // INVALID: end points outside allocated space. // b := make([]byte, n) // end = unsafe.Pointer(uintptr(unsafe.Pointer(&b[0])) + uintptr(n)) // // Note that both conversions must appear in the same expression, with only // the intervening arithmetic between them: // // // INVALID: uintptr cannot be stored in variable // // before conversion back to Pointer. // u := uintptr(p) // p = unsafe.Pointer(u + offset) // // Note that the pointer must point into an allocated object, so it may not be nil. // // // INVALID: conversion of nil pointer // u := unsafe.Pointer(nil) // p := unsafe.Pointer(uintptr(u) + offset) // // (4) Conversion of a Pointer to a uintptr when calling syscall.Syscall. // // The Syscall functions in package syscall pass their uintptr arguments directly // to the operating system, which then may, depending on the details of the call, // reinterpret some of them as pointers. // That is, the system call implementation is implicitly converting certain arguments // back from uintptr to pointer. // // If a pointer argument must be converted to uintptr for use as an argument, // that conversion must appear in the call expression itself: // // syscall.Syscall(SYS_READ, uintptr(fd), uintptr(unsafe.Pointer(p)), uintptr(n)) // // The compiler handles a Pointer converted to a uintptr in the argument list of // a call to a function implemented in assembly by arranging that the referenced // allocated object, if any, is retained and not moved until the call completes, // even though from the types alone it would appear that the object is no longer // needed during the call. // // For the compiler to recognize this pattern, // the conversion must appear in the argument list: // // // INVALID: uintptr cannot be stored in variable // // before implicit conversion back to Pointer during system call. // u := uintptr(unsafe.Pointer(p)) // syscall.Syscall(SYS_READ, uintptr(fd), u, uintptr(n)) // // (5) Conversion of the result of reflect.Value.Pointer or reflect.Value.UnsafeAddr // from uintptr to Pointer. // // Package reflect's Value methods named Pointer and UnsafeAddr return type uintptr // instead of unsafe.Pointer to keep callers from changing the result to an arbitrary // type without first importing "unsafe". However, this means that the result is // fragile and must be converted to Pointer immediately after making the call, // in the same expression: // // p := (*int)(unsafe.Pointer(reflect.ValueOf(new(int)).Pointer())) // // As in the cases above, it is invalid to store the result before the conversion: // // // INVALID: uintptr cannot be stored in variable // // before conversion back to Pointer. // u := reflect.ValueOf(new(int)).Pointer() // p := (*int)(unsafe.Pointer(u)) // // (6) Conversion of a reflect.SliceHeader or reflect.StringHeader Data field to or from Pointer. // // As in the previous case, the reflect data structures SliceHeader and StringHeader // declare the field Data as a uintptr to keep callers from changing the result to // an arbitrary type without first importing "unsafe". However, this means that // SliceHeader and StringHeader are only valid when interpreting the content // of an actual slice or string value. // // var s string // hdr := (*reflect.StringHeader)(unsafe.Pointer(&s)) // case 1 // hdr.Data = uintptr(unsafe.Pointer(p)) // case 6 (this case) // hdr.Len = n // // In this usage hdr.Data is really an alternate way to refer to the underlying // pointer in the string header, not a uintptr variable itself. // // In general, reflect.SliceHeader and reflect.StringHeader should be used // only as *reflect.SliceHeader and *reflect.StringHeader pointing at actual // slices or strings, never as plain structs. // A program should not declare or allocate variables of these struct types. // // // INVALID: a directly-declared header will not hold Data as a reference. // var hdr reflect.StringHeader // hdr.Data = uintptr(unsafe.Pointer(p)) // hdr.Len = n // s := *(*string)(unsafe.Pointer(&hdr)) // p possibly already lost // type Pointer *ArbitraryType // Sizeof takes an expression x of any type and returns the size in bytes // of a hypothetical variable v as if v was declared via var v = x. // The size does not include any memory possibly referenced by x. // For instance, if x is a slice, Sizeof returns the size of the slice // descriptor, not the size of the memory referenced by the slice. // The return value of Sizeof is a Go constant. func Sizeof(x ArbitraryType) uintptr // Offsetof returns the offset within the struct of the field represented by x, // which must be of the form structValue.field. In other words, it returns the // number of bytes between the start of the struct and the start of the field. // The return value of Offsetof is a Go constant. func Offsetof(x ArbitraryType) uintptr // Alignof takes an expression x of any type and returns the required alignment // of a hypothetical variable v as if v was declared via var v = x. // It is the largest value m such that the address of v is always zero mod m. // It is the same as the value returned by reflect.TypeOf(x).Align(). // As a special case, if a variable s is of struct type and f is a field // within that struct, then Alignof(s.f) will return the required alignment // of a field of that type within a struct. This case is the same as the // value returned by reflect.TypeOf(s.f).FieldAlign(). // The return value of Alignof is a Go constant. func Alignof(x ArbitraryType) uintptr
總結
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
golang執(zhí)行命令獲取執(zhí)行結果狀態(tài)(推薦)
這篇文章主要介紹了golang執(zhí)行命令獲取執(zhí)行結果狀態(tài)的相關知識,非常不錯,具有一定的參考借鑒價值,需要的朋友參考下吧2019-11-11Golang并發(fā)編程之main goroutine的創(chuàng)建與調度詳解
這篇文章主要為大家詳細介紹了Golang并發(fā)編程中main goroutine的創(chuàng)建與調度,文中的示例代碼講解詳細,感興趣的小伙伴可以跟隨小編一起學習一下2023-03-03詳解Golang time包中的time.Duration類型
在日常開發(fā)過程中,會頻繁遇到對時間進行操作的場景,使用 Golang 中的 time 包可以很方便地實現(xiàn)對時間的相關操作,本文講解一下 time 包中的 time.Duration 類型,需要的朋友可以參考下2023-07-07