一文教你實現Python重試裝飾器
一、前言
在寫業(yè)務代碼時候,有許多場景需要重試某塊業(yè)務邏輯,例如網絡請求、購物下單等,希望發(fā)生異常的時候多重試幾次。本文分享如何利用Python 的裝飾器來進行面向切面(AOP)的方式實現自動重試器。
二、簡單分析
一個重試裝飾器,最重要的就是發(fā)生意外異常處理失敗自動重試,有如下幾點需要注意
- 失敗不能一直重試,因為可能會出現死循環(huán)浪費資源,因此需要有 最大重試次數 或者 最大超時時間
- 不能重試太頻繁,因為太頻繁容易導致重試次數很快用完,卻沒有成功響應,需要有 重試時間間隔 來限制,有時可以加大成功概率,例如網絡請求時有一段時間是堵塞的,或者對方服務負載太高導致一段時間無法響應等。
簡單分析完,我們的重試裝飾器,就要支持可配置最大重試次數、最大超時時間、重試間隔,所以裝飾器就要設計成帶參數裝飾器。
三、代碼模擬實現
重試裝飾器-初版
分析完畢后,看看第一版的裝飾器
import time from functools import wraps def task_retry(max_retry_count: int = 5, time_interval: int = 2): """ 任務重試裝飾器 Args: max_retry_count: 最大重試次數 默認5次 time_interval: 每次重試間隔 默認2s """ def _task_retry(task_func): @wraps(task_func) def wrapper(*args, **kwargs): # 函數循環(huán)重試 for retry_count in range(max_retry_count): print(f"execute count {retry_count + 1}") try: task_result = task_func(*args, **kwargs) return task_result except Exception as e: print(f"fail {str(e)}") time.sleep(time_interval) return wrapper return _task_retry
裝飾器內部閉包,就簡單通過 for 循環(huán) 來執(zhí)行指定重試次數,成功獲取結果就直接 return 返回,發(fā)生異常則睡眠配置重試間隔時間后繼續(xù)循環(huán)
寫個例子來模擬測試下看看效果
@task_retry() def user_place_order(): print("user place order success") return {"code": 0, "msg": "ok"} ret = user_place_order() print(ret) >>>out execute count 1 user place order success {'code': 0, 'msg': 'ok'}
沒有異常正常執(zhí)行,在函數中模擬一個異常來進行重試看看
@task_retry(max_retry_count=3, time_interval=1) def user_place_order(): a = 1 / 0 print("user place order success") return {"code": 0, "msg": "ok"} ret = user_place_order() print("user place order ret", ret) >>>out fail division by zero execute count 2 fail division by zero execute count 3 fail division by zero user place order ret None
可以看到 user_place_order 函數執(zhí)行了三遍,都發(fā)生了除零異常,最后超過最大執(zhí)行次數,返回了 None 值,我們可以在主邏輯中來判斷返回值是否為 None 來進行超過最大重試次數失敗的業(yè)務邏輯處理
ret = user_place_order() print("user place order ret", ret) if not ret: print("user place order failed") ...
重試裝飾器-改進版
現在只能配置 最大重試次數 沒有最大超時時間,有時候我們想不但有重試,還得在規(guī)定時間內完成,不想浪費太多試錯時間。所以增加一個 最大超時時間配置選項默認為None,有值時超過最大超時時間退出重試。
def task_retry(max_retry_count: int = 5, time_interval: int = 2, max_timeout: int = None): """ 任務重試裝飾器 Args: max_retry_count: 最大重試次數 默認 5 次 time_interval: 每次重試間隔 默認 2s max_timeout: 最大超時時間,單位s 默認為 None, """ def _task_retry(task_func): @wraps(task_func) def wrapper(*args, **kwargs): # 函數循環(huán)重試 start_time = time.time() for retry_count in range(max_retry_count): print(f"execute count {retry_count + 1}") use_time = time.time() - start_time if max_timeout and use_time > max_timeout: # 超出最大超時時間 print(f"execute timeout, use time {use_time}s, max timeout {max_timeout}") return try: return task_func(*args, **kwargs) except Exception as e: print(f"fail {str(e)}") time.sleep(time_interval) return wrapper return _task_retry
看看效果
# 超時 @task_retry(max_retry_count=3, time_interval=1, max_timeout=2) def user_place_order(): a = 1 / 0 print("user place order success") return {"code": 0, "msg": "ok"} >>>out execute count 1 fail division by zero execute count 2 fail division by zero execute count 3 execute timeout, use time 2.010528802871704s, max timeout 2 user place order ret None # 超過最大重試次數 @task_retry(max_retry_count=3, time_interval=1) def user_place_order(): a = 1 / 0 print("user place order success") return {"code": 0, "msg": "ok"} >>>out execute count 1 fail division by zero execute count 2 fail division by zero execute count 3 fail division by zero user place order ret None # 正常 @task_retry(max_retry_count=3, time_interval=1, max_timeout=2) def user_place_order(): # a = 1 / 0 print("user place order success") return {"code": 0, "msg": "ok"} >>>out execute count 1 user place order success user place order ret {'code': 0, 'msg': 'ok'}
重試裝飾器-加強版
到這重試裝飾器基本功能就實現了,但還可以加強,Python現在支持 async 異步方式寫法,因此要是可以兼容異步寫法那就更好了。先看看裝飾異步函數會是什么樣的效果
import time import asyncio import functools def task_retry(max_retry_count: int = 5, time_interval: int = 2, max_timeout: int = None): """ 任務重試裝飾器 Args: max_retry_count: 最大重試次數 默認 5 次 time_interval: 每次重試間隔 默認 2s max_timeout: 最大超時時間,單位s 默認為 None, """ def _task_retry(task_func): @wraps(task_func) def wrapper(*args, **kwargs): # 函數循環(huán)重試 start_time = time.time() for retry_count in range(max_retry_count): print(f"execute count {retry_count + 1}") use_time = time.time() - start_time if max_timeout and use_time > max_timeout: # 超出最大超時時間 print(f"execute timeout, use time {use_time}s, max timeout {max_timeout}") return try: return task_func(*args, **kwargs) except Exception as e: print(f"fail {str(e)}") time.sleep(time_interval) return wrapper return _task_retry @task_retry(max_retry_count=3, time_interval=1, max_timeout=2) def user_place_order(): # a = 1 / 0 print("user place order success") return {"code": 0, "msg": "ok"} @task_retry(max_retry_count=3, time_interval=2, max_timeout=5) async def user_place_order_async(): """異步函數重試案例""" a = 1 / 0 print("user place order success") return {"code": 0, "msg": "ok"} async def main(): # 同步案例 # ret = user_place_order() # print(f"user place order ret {ret}") # 異步案例 ret = await user_place_order_async() print(f"user place order ret {ret}") if __name__ == '__main__': asyncio.run(main()) # 正常時候 execute count 1 user place order success user place order ret {'code': 0, 'msg': 'ok'} # 異常時候 >>>out execute count 1 Traceback (most recent call last): File "G:/code/python/py-tools/decorator/base.py", line 138, in <module> asyncio.run(main()) File "G:\softs\DevEnv\python-3.7.9\lib\asyncio\runners.py", line 43, in run return loop.run_until_complete(main) File "G:\softs\DevEnv\python-3.7.9\lib\asyncio\base_events.py", line 587, in run_until_complete return future.result() File "G:/code/python/py-tools/decorator/base.py", line 133, in main ret = await user_place_order_async() File "G:/code/python/py-tools/decorator/base.py", line 121, in user_place_order_async a = 1 / 0 ZeroDivisionError: division by zero Process finished with exit code 1
發(fā)現發(fā)生異常的時候并沒有重試,為什么呢?其實在執(zhí)行 task_func() 它并沒有真正的執(zhí)行內部邏輯,而是返回一個 coroutine 協程對象,并不會報異常,所以再裝飾器中執(zhí)行一遍就成功就出來了,外面 ret = await user_place_order_async(), 后才真正的等待執(zhí)行,然后執(zhí)行函數內的邏輯再報異常就沒有捕獲到。我們可以打斷點驗證下
這樣裝飾器就不支持異步函數的重試,需要加強它,可以使用 asyncio.iscoroutinefunction() 來進行異步函數的判斷, 然后再加一個異步函數的閉包就可以實現異步、同步函數都兼容的重試裝飾器。
def task_retry(max_retry_count: int = 5, time_interval: int = 2, max_timeout: int = None): """ 任務重試裝飾器 Args: max_retry_count: 最大重試次數 默認 5 次 time_interval: 每次重試間隔 默認 2s max_timeout: 最大超時時間,單位s 默認為 None, """ def _task_retry(task_func): @functools.wraps(task_func) def sync_wrapper(*args, **kwargs): # 同步循環(huán)重試 start_time = time.time() for retry_count in range(max_retry_count): print(f"execute count {retry_count + 1}") use_time = time.time() - start_time if max_timeout and use_time > max_timeout: # 超出最大超時時間 print(f"execute timeout, use time {use_time}s, max timeout {max_timeout}") return try: task_ret = task_func(*args, **kwargs) return task_ret except Exception as e: print(f"fail {str(e)}") time.sleep(time_interval) @functools.wraps(task_func) async def async_wrapper(*args, **kwargs): # 異步循環(huán)重試 start_time = time.time() for retry_count in range(max_retry_count): print(f"execute count {retry_count + 1}") use_time = time.time() - start_time if max_timeout and use_time > max_timeout: # 超出最大超時時間 print(f"execute timeout, use time {use_time}s, max timeout {max_timeout}") return try: return await task_func(*args, **kwargs) except Exception as e: print(f"fail {str(e)}") await asyncio.sleep(time_interval) # 異步函數判斷 wrapper_func = async_wrapper if asyncio.iscoroutinefunction(task_func) else sync_wrapper return wrapper_func return _task_retry
注意時間等待 await asyncio.sleep(time_interval) 會導致函數掛起,程序不會在這里等待,而是去事件循環(huán)loop中執(zhí)行其他的已經就緒的任務,如果其他函數運行時間太久了才切換回來,會導致時間超時,換成 time.sleep()的話其實也沒有用,如果函數內部還有異步函數執(zhí)行還是會切換出去,因此異步的時候感覺超時參數意義不大。
模擬測試下
@task_retry(max_retry_count=5, time_interval=2, max_timeout=5) async def user_place_order_async(): """異步函數重試案例""" a = 1 / 0 print("user place order success") return {"code": 0, "msg": "ok"} async def io_test(): """模擬io阻塞""" print("io test start") time.sleep(3) print("io test end") return "io test end" async def main(): # 同步案例 # ret = user_place_order() # print(f"user place order ret {ret}") # 異步案例 # ret = await user_place_order_async() # print(f"user place order ret {ret}") # 并發(fā)異步 order_ret, io_ret = await asyncio.gather( user_place_order_async(), io_test(), ) print(f"io ret {io_ret}") print(f"user place order ret {order_ret}") if __name__ == '__main__': asyncio.run(main()) >>>out execute count 1 fail division by zero io test start io test end execute count 2 fail division by zero execute count 3 execute timeout, use time 5.015768527984619s, max timeout 5 io ret io test end user place order ret None
可以看出執(zhí)行一遍后自動切換到了 io_test 中執(zhí)行由于 io test 中的 time.sleep(3) 會導致整個線程阻塞,一定要等到io_test執(zhí)行完后才會切換回去,然后再執(zhí)行兩遍就超時了,你可能會說都用異步的庫,是的異步的庫是可以加速,但我想表達就是這時候統(tǒng)計的耗時是整個程序的而不是單獨一個函數的。大家可以在評論區(qū)幫我想想有沒有其他的方法,要么就不要用這個超時參數。
可以兼容異步函數、然后超時參數可以不配置,影響不大,O(∩_∩)O~
重試裝飾器-最終版
最終版就是利用拋異常的方式來結束超過最大重試次數、最大超時,而不是直接返回None,然后再添加一個可配置捕獲指定異常的參數,當發(fā)生特定異常的時候才重試。
import time import asyncio import functools from typing import Type class MaxRetryException(Exception): """最大重試次數異常""" pass class MaxTimeoutException(Exception): """最大超時異常""" pass def task_retry( max_retry_count: int = 5, time_interval: int = 2, max_timeout: int = None, catch_exc: Type[BaseException] = Exception ): """ 任務重試裝飾器 Args: max_retry_count: 最大重試次數 默認 5 次 time_interval: 每次重試間隔 默認 2s max_timeout: 最大超時時間,單位s 默認為 None, catch_exc: 指定捕獲的異常類用于特定的異常重試 默認捕獲 Exception """ def _task_retry(task_func): @functools.wraps(task_func) def sync_wrapper(*args, **kwargs): # 函數循環(huán)重試 start_time = time.time() for retry_count in range(max_retry_count): print(f"execute count {retry_count + 1}") use_time = time.time() - start_time if max_timeout and use_time > max_timeout: # 超出最大超時時間 raise MaxTimeoutException(f"execute timeout, use time {use_time}s, max timeout {max_timeout}") try: task_ret = task_func(*args, **kwargs) return task_ret except catch_exc as e: print(f"fail {str(e)}") time.sleep(time_interval) else: # 超過最大重試次數, 拋異常終止 raise MaxRetryException(f"超過最大重試次數失敗, max_retry_count {max_retry_count}") @functools.wraps(task_func) async def async_wrapper(*args, **kwargs): # 異步循環(huán)重試 start_time = time.time() for retry_count in range(max_retry_count): print(f"execute count {retry_count + 1}") use_time = time.time() - start_time if max_timeout and use_time > max_timeout: # 超出最大超時時間 raise MaxTimeoutException(f"execute timeout, use time {use_time}s, max timeout {max_timeout}") try: return await task_func(*args, **kwargs) except catch_exc as e: print(f"fail {str(e)}") await asyncio.sleep(time_interval) else: # 超過最大重試次數, 拋異常終止 raise MaxRetryException(f"超過最大重試次數失敗, max_retry_count {max_retry_count}") # 異步函數判斷 wrapper_func = async_wrapper if asyncio.iscoroutinefunction(task_func) else sync_wrapper return wrapper_func return _task_retry @task_retry(max_retry_count=3, time_interval=1, catch_exc=ZeroDivisionError,max_timeout=5) def user_place_order(): a = 1 / 0 print("user place order success") return {"code": 0, "msg": "ok"} @task_retry(max_retry_count=5, time_interval=2, max_timeout=5) async def user_place_order_async(): """異步函數重試案例""" a = 1 / 0 print("user place order success") return {"code": 0, "msg": "ok"} async def io_test(): """模擬io阻塞""" print("io test start") time.sleep(3) print("io test end") return "io test end" async def main(): # 同步案例 try: ret = user_place_order() print(f"user place order ret {ret}") except MaxRetryException as e: # 超過最大重試次數處理 print("MaxRetryException", e) except MaxTimeoutException as e: # 超過最大超時處理 print("MaxTimeoutException", e) # 異步案例 # ret = await user_place_order_async() # print(f"user place order ret {ret}") # 并發(fā)異步 # order_ret, io_ret = await asyncio.gather( # user_place_order_async(), # io_test(), # ) # print(f"io ret {io_ret}") # print(f"user place order ret {order_ret}") if __name__ == '__main__': asyncio.run(main())
測試捕獲指定異常
# 指定捕獲除零錯誤,正常捕獲重試 @task_retry(max_retry_count=3, time_interval=1, catch_exc=ZeroDivisionError) def user_place_order(): a = 1 / 0 # a = [] # b = a[0] print("user place order success") return {"code": 0, "msg": "ok"} # out execute count 1 fail division by zero execute count 2 fail division by zero execute count 3 fail division by zero MaxRetryException 超過最大重試次數失敗, max_retry_count 3 # 指定捕獲除零錯誤,報索引越界錯誤,未正常捕獲重試,直接退出 @task_retry(max_retry_count=3, time_interval=1, catch_exc=ZeroDivisionError) def user_place_order(): # a = 1 / 0 a = [] b = a[0] print("user place order success") return {"code": 0, "msg": "ok"} # out Traceback (most recent call last): File "G:/code/python/py-tools/decorator/base.py", line 184, in <module> asyncio.run(main()) File "G:\softs\DevEnv\python-3.7.9\lib\asyncio\runners.py", line 43, in run return loop.run_until_complete(main) File "G:\softs\DevEnv\python-3.7.9\lib\asyncio\base_events.py", line 587, in run_until_complete return future.result() File "G:/code/python/py-tools/decorator/base.py", line 161, in main ret = user_place_order() File "G:/code/python/py-tools/decorator/base.py", line 97, in sync_wrapper task_ret = task_func(*args, **kwargs) File "G:/code/python/py-tools/decorator/base.py", line 137, in user_place_order b = a[0] IndexError: list index out of range Process finished with exit code 1
用拋異常的方式推出更好知道是因為什么原因退出來進行對應的業(yè)務邏輯處理。乍一看兼容異步、同步函數導致這個裝飾器有點代碼冗余,看看大家有沒有更好的辦法。
以上就是一文教你實現Python重試裝飾器的詳細內容,更多關于Python重試裝飾器的資料請關注腳本之家其它相關文章!
相關文章
python完成FizzBuzzWhizz問題(拉勾網面試題)示例
這篇文章主要介紹了python完成FizzBuzzWhizz問題(拉勾網面試題)示例,需要的朋友可以參考下2014-05-05Pycharm中Python環(huán)境配置常見問題解析
這篇文章主要介紹了Pycharm中Python環(huán)境配置常見問題,結合圖文形式分析了Pycharm中Python環(huán)境配置模塊路徑問題、虛擬環(huán)境創(chuàng)建、配置遠程服務器、連接數據庫等常見問題與操作方法,需要的朋友可以參考下2020-01-01