Python?調用GPT-3?API實現(xiàn)過程詳解
用 Python 調用 GPT-3 API
GPT-3 是去年由 Open AI 推出的語言機器學習模型。它因其能夠寫作、寫歌、寫詩,甚至寫代碼而獲得了廣泛的媒體關注!該工具免費使用,只需要注冊一個電子郵件即可。
GPT-3 是一種叫 transformer 的機器學習模型。具體來說,它就是 Generative Pre-training Transformer,因此叫做“GPT”。Transformer 架構使用自我注意和強化學習來模擬會話文本。通常,它一次處理一個單詞,并使用前面的單詞預測序列中的下一個單詞。
GPT-3 具有廣泛的應用場景,涵蓋科學、藝術和技術等所有領域。它可以用來回答有關科學和數(shù)學的基本問題。甚至可以準確回答研究生級別的數(shù)學和科學概念相關的問題。更令人驚訝的是,我詢問了一些與我的物理化學博士研究有關的問題,它能夠提供較好的解釋。不過,它也有其局限性。當我詢問 GPT-3 有關物理化學中更新奇的研究方法時,它無法提供明確的答案。因此,在作為教育和研究的搜索引擎使用時,應該謹慎使用 GPT-3。GPT-3 沒有事實核查功能。隨著事實核查功能的提高,我可以想象 GPT-3 在研究生階段甚至在研究領域將非常有用。
此外,除了我個人的經(jīng)驗外,我還看到了其他很多很酷的工具應用。例如,一個開發(fā)人員使用 GPT-3 來編排完成復雜任務的云服務。其他用戶使用 GPT-3 生成了工作的 python 和 SQL 腳本,以及其他語言的程序。在藝術領域,用戶請 GPT-3 寫一篇比較現(xiàn)代和當代藝術的文章。GPT-3 的潛在應用幾乎在任何領域都是豐富的。
GPT-3 在回答有準確內容的基本問題方面表現(xiàn)得很好。例如,它可以對光合作用做出相當不錯的解釋。它不能很好地回答關于光合作用的前沿研究問題,例如,它不能描述光合作用的機理和涉及的量子概念。它可以給出體面的回應,但不太可能提供大多數(shù)研究問題的技術細節(jié)。同樣,GPT-3 可以編寫一些簡單的工作代碼,但是隨著任務的復雜度增加,生成的代碼就越容易出錯。它也不能生成政 治觀點、倫理價值觀、投資建議、準確的新聞報道等通常是由人類生成的內容。
盡管 GPT-3 有其局限性,但其廣泛適用性令人印象深刻。我認為提出一些有趣的數(shù)據(jù)科學和機器學習提示,以看看它們是否可以補充數(shù)據(jù)科學工作流程的部分是有趣的。
首先,我們將根據(jù)一些簡單的提示生成一些與數(shù)據(jù)科學有關的文本。一旦我們對該工具有了一些了解,就可以詢問一些可以幫助解決數(shù)據(jù)科學任務的問題。有幾個有趣的數(shù)據(jù)科學和機器學習問題,我們可以向 GPT-3 詢問。例如,是否可以使用 GPT-3 源自公開可用的數(shù)據(jù)集?GPT-3 的訓練數(shù)據(jù)有多少等。另一個有趣的應用是問題框架。 GPT-3 可以幫助用戶構建良好的機器學習研究問題嗎?雖然它難以給出具體的技術答案,但也許它可以很好地構建出未解決的研究問題。
另一個很酷的應用是使用 GPT-3 來決定用于特定應用程序的 ML 模型。這很好,因為對于在線文獻豐富的經(jīng)過驗證的技術,它應該能夠很好地幫助用戶選擇模型,并解釋為什么選定的模型最適合。最后,我們可以嘗試使用GPT-3 編寫一些數(shù)據(jù)科學任務的 Python 代碼。例如,我們將看看是否可以使用它來編寫生成特定用例的合成數(shù)據(jù)的代碼。
注意:GPT-3 API 的結果是不確定的。因此,您獲得的結果可能與此處顯示的輸出略有不同。此外,由于 GPT-3 沒有事實核查機制,建議您對計劃用于工作,學?;騻€人項目的任何事實結果進行雙重核查。
在這項工作中,我將在 Deepnote 中編寫代碼,它是一個協(xié)作數(shù)據(jù)科學筆記本,使得運行可再現(xiàn)實驗非常簡單。
安裝 GPT-3
首先,讓我們到 Deepnote 并創(chuàng)建一個新項目(如果您還沒有賬戶,可以免費注冊)。
創(chuàng)建一個名為“GPT3”的項目以及該項目中的一個名為“GPT3_ds”的 notebook。
接下來,我們在第一個單元中使用 pip 安裝 OpenAI:
%pip install openai %pip install catboost
將密鑰保存在 openAI 對象的 api_key 屬性:
import openai openai.api_key = "your-key"
接下來就可以提問了,比如問“什么是 Pandas 庫”,GP3 會給反饋:
completion = openai.Completion.create(engine="text-davinci-003", prompt="What is the pandas library?", max_tokens=1000) print(completion.choices[0]['text']) # output Pandas is an open source software library written in Python for data manipulation and analysis. Pandas is widely used in data science, machine learning and many other fields. It provides high-level data structures and tools for handling and manipulating data, including data frames, series, plotting tools and more.
我們甚至可以詢問更具體的問題,例如“Pandas 的一些常見用途是什么?”。它給出了合理的答案,列出了數(shù)據(jù)整理、數(shù)據(jù)可視化、數(shù)據(jù)聚合和時間序列分析:
completion = openai.Completion.create(engine="text-davinci-003", prompt="what are some common Pandas use cases?", max_tokens=240) print(completion.choices[0]['text']) # output 1. Data Cleaning and Transformation 2. Data Analysis and Exploration 3. Time Series Analysis 4. Data Visualization 5. Statistical Modeling 6. Predictive Modeling 7. Machine Learning 8. Web Scraping
詢問“最常見的深度學習庫是什么?”:
#what are the most common deep learning libraries? completion = openai.Completion.create(engine="text-davinci-003", prompt="what are the most common deep learning libraries?", max_tokens=240) print(completion.choices[0]['text']) # output . TensorFlow 2. PyTorch 3. Keras 4. Caffe 5. CNTK 6. MXNet 7. Theano 8. Deeplearning4j 9. Gensim 10. LUNA
甚至可以詢問“什么是深度神經(jīng)網(wǎng)絡?”:
completion = openai.Completion.create(engine="text-davinci-003", prompt="What is a deep neural network?", max_tokens=1000) print(completion.choices[0]['text']) # output A deep neural network (DNN) is a type of artificial neural network (ANN) with multiple layers of neurons between the input and output layers. DNNs are designed to learn complex non-linear relationships from data, and have been successfully applied in a wide range of areas such as image recognition, natural language processing, and financial forecasting.
使用 GPT-3 進行事實搜索應該謹慎進行,因為沒有任何事實核查機制。在大多數(shù)情況下,如果您想獲得關于數(shù)據(jù)科學和機器學習的眾多在線博客和論壇中已知概念的表面理解,GPT-3 應該能夠很好地工作。
特征工程
GPT-3 的另一個有趣的應用案例是用作指導數(shù)據(jù)科學工作的輔助工具。例如,GPT-3 能否給出一些改進模型性能的特征變換的想法?讓我們詢問 GPT-3:
completion = openai.Completion.create(engine="text-davinci-003", prompt="give some ideas on feature transformations that can improve model performance", max_tokens=1000) print(completion.choices[0]['text']) # output 1. Standardization/Normalization: A common feature transform used to ensure features are on the same scale, standardizing or normalizing variables can help limit the severity of outliers and improve the overall model performance. 2. Feature Binning: Binning is a process of transforming numerical variables into categorical ones. This can be useful when working with variables that have too many levels and can have a significant effect on the model performance. 3. Polynomial Expansion: When a nonlinear relationship is expected between features and the output variable, a polynomial expansion feature transformation can help improve model performance. 4. Feature Selection: Removing redundant or irrelevant features from the dataset can help improve the model performance as these features may lead to overfitting. 5. Ensemble: Combining different types of models (or different versions of the same model) can often improve performance due to their combined capabilities.
我們看到它給出了一些很好的特征變換建議以及每個變換的解釋。
讓我們看看是否可以更進一步。讓它寫一些 Python 代碼:
completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that performs data standardization", max_tokens=1000) print(completion.choices[0]['text']) #output # Import the necessary libraries import numpy as np # Define the data data = np.array([[-3, 9, 0, 8], [ 4, 6, 5, 12], [20, 2, 3, 15]]) # Calculate mean and standard deviation mean = np.mean(data, axis=0) std = np.std(data, axis=0) # Perform data standardization standardized_data = (data - mean) / std # Print the results print(standardized_data)
復制并粘貼到一個新單元格中并運行它:
# Import the necessary libraries import numpy as np # Define the data data = np.array([[-3, 9, 0, 8], [ 4, 6, 5, 12], [20, 2, 3, 15]]) # Calculate mean and standard deviation mean = np.mean(data, axis=0) std = np.std(data, axis=0) # Perform data standardization standardized_data = (data - mean) / std # Print the results print(standardized_data) # output [[-1.03881504 1.16247639 -1.29777137 -1.27872403] [-0.31164451 0.11624764 1.13554995 0.11624764] [ 1.35045955 -1.27872403 0.16222142 1.16247639]]
接下來,讓我們對特征標準化變換做同樣的操作:
completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that performs data normalization on fake data", max_tokens=1000) print(completion.choices[0]['text']) # output # Normalizing data will rescale features in the range [0,1] data = [3, 7, 10, 13] # Sample data # Calculate the maximum and minimum of the data max_data = max(data) min_data = min(data) # Normalize the data normalized_data = [(x-min_data)/(max_data-min_data) for x in data] # Print first value to check print(normalized_data[0]) # Prints 0.2
執(zhí)行返回的代碼:
# Normalizing data will rescale features in the range [0,1] data = [3, 7, 10, 13] # Sample data # Calculate the maximum and minimum of the data max_data = max(data) min_data = min(data) # Normalize the data normalized_data = [(x-min_data)/(max_data-min_data) for x in data] # Print first value to check print(normalized_data)
模型選擇
另一個酷的應用是模型選擇。讓我們看看 GPT-3 是否可以指導我們選擇機器學習模型。詢問“如何選擇時間序列模型?”
completion = openai.Completion.create(engine="text-davinci-003", prompt="How do i select a time series model?", max_tokens=1000) print(completion.choices[0]['text']) # output The selection of a time series model depends on the type of data that is being analyzed. If there are long-term trends or cycles in the data, then an autoregressive integrated moving average (ARIMA) model or a exponential smoothing (ETS) model may be the best option. If the data are seasonal or there are outliers present, then a Holt-Winters model may be a better choice. If the data do not contain any long-term trends or seasonality, a Box-Jenkins model may be suitable. Regardless of the model selected, it is important to consider the type of data that is being modeled when selecting a time series model.
答案是合理的,列出了平穩(wěn)性、季節(jié)性、趨勢以及模型性能評估的檢查。讓我們詢問更具體的問題,例如“何時使用 ARIMA vs Prophet?”:
completion = openai.Completion.create(engine="text-davinci-003", prompt="When to use ARIMA vs FB prophet?", max_tokens=1000) print(completion.choices[0]['text']) # output ARIMA and FB Prophet are both used for time series forecasting. ARIMA is a linear model and is better for predicting long-term trends with stationary data. FB Prophet is a non-linear model and is better for predicting short-term trends with non-stationary data. So, you would use ARIMA when you are mainly concerned with predicting long-term trends, and you would use FB Prophet when you are mainly concerned with predicting short-term trends.
生成合成數(shù)據(jù)
能用 GPT-3 生成合成數(shù)據(jù)嗎?讓我們看一看!我們將生成一個眾所周知的數(shù)據(jù):醫(yī)院再入院和交易數(shù)據(jù)。
- 醫(yī)院再入院數(shù)據(jù)
詢問 GPT-3:“編寫 python 代碼,生成合成醫(yī)院再入院數(shù)據(jù)”。
completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that generates synthetic healthcare readmission data stored in a dataframe", max_tokens=1000) print(completion.choices[0]['text']) # output import pandas as pd import numpy as np # Create Dataframe df = pd.DataFrame(columns=['Patient_ID', 'Age', 'Admission_Type', 'Readmitted']) # Generate Data np.random.seed(0) for i in range(10): admission_type = np.random.choice(['Urgent', 'Scheduled', 'Emergency']) patient_age = np.random.randint(18, 80) readmission = np.random.choice([0, 1]) df.loc[i] = [i+1, patient_age, admission_type, readmission] # Print Dataframe to Console print(df)
執(zhí)行此代碼:
import pandas as pd import numpy as np # Create Dataframe df = pd.DataFrame(columns=['Patient_ID', 'Age', 'Admission_Type', 'Readmitted']) # Generate Data np.random.seed(0) for i in range(10): admission_type = np.random.choice(['Urgent', 'Scheduled', 'Emergency']) patient_age = np.random.randint(18, 80) readmission = np.random.choice([0, 1]) df.loc[i] = [i+1, patient_age, admission_type, readmission] # Print Dataframe to Console df
輸出結果:
讓我們看看是否可以用這個合成數(shù)據(jù)構建一個分類模型,預測重新入院的人,并評估性能。
completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that generates synthetic healthcare readmission data stored in a dataframe. From this write code that builds a catboost model that predicts readmission outcomes. Also write code to calculate and print performance", max_tokens=3000) print(completion.choices[0]['text']) # output metrics ## Generate Synthetic Healthcare Readmission Data import pandas as pd import numpy as np # set the seed for reproducibility np.random.seed(1) # create dataframe df = pd.DataFrame(np.random.randint(0, 100, size=(100, 10)), columns=['age','gender','length_of_stay','diagnosis','NIV','laboratory','past_hospitalizations','medications','bmi','readmission']) # add labels to data frame df['age'] = np.random.randint(20, 80, size=(100)) df['gender'] = np.random.randint(1, 2, size=(100)) df['length_of_stay'] = np.random.randint(2, 14, size=(100)) df['diagnosis'] = np.random.randint(1, 5, size=(100)) df['NIV'] = np.random.randint(0, 2, size=(100)) df['laboratory'] = np.random.randint(1, 6, size=(100)) df['past_hospitalizations'] = np.random.randint(0, 10, size=(100)) df['medications'] = np.random.randint(1, 6, size=(100)) df['bmi'] = np.random.randint(18, 35, size=(100)) df['readmission'] = np.random.randint(0, 2, size=(100)) # print the dataframe print(df) ## Build a CatBoost Model from catboost import CatBoostClassifier from sklearn.metrics import confusion_matrix # separate X and y X = df.iloc[:, 0:9] y = df.iloc[:, 9] # initialize catboost classifier cat_clf = CatBoostClassifier(iterations=50, learning_rate=0.3, depth=8, eval_metric='Accuracy', random_seed=42) # fit the model cat_clf.fit(X, y) # predict values y_pred = cat_clf.predict(X) # print confusion matrix conf_mat = confusion_matrix(y, y_pred) print(conf_mat) ## Calculate and Print Performance Metrics from sklearn.metrics import accuracy_score, precision_score, recall_score # calculate performance metrics acc = accuracy_score(y, y_pred) precision = precision_score(y, y_pred) recall = recall_score(y, y_pred) # print performance metrics print("Accuracy: {}".format(acc)) print("Precision: {}".format(precision)) print("Recall: {}".format(recall))
復制上面的代碼,并執(zhí)行:
## Generate Synthetic Healthcare Readmission Data import pandas as pd import numpy as np # set the seed for reproducibility np.random.seed(1) # create dataframe df = pd.DataFrame(np.random.randint(0, 100, size=(100, 10)), columns=['age','gender','length_of_stay','diagnosis','NIV','laboratory','past_hospitalizations','medications','bmi','readmission']) # add labels to data frame df['age'] = np.random.randint(20, 80, size=(100)) df['gender'] = np.random.randint(1, 2, size=(100)) df['length_of_stay'] = np.random.randint(2, 14, size=(100)) df['diagnosis'] = np.random.randint(1, 5, size=(100)) df['NIV'] = np.random.randint(0, 2, size=(100)) df['laboratory'] = np.random.randint(1, 6, size=(100)) df['past_hospitalizations'] = np.random.randint(0, 10, size=(100)) df['medications'] = np.random.randint(1, 6, size=(100)) df['bmi'] = np.random.randint(18, 35, size=(100)) df['readmission'] = np.random.randint(0, 2, size=(100)) # print the dataframe print(df) ## Build a CatBoost Model from catboost import CatBoostClassifier from sklearn.metrics import confusion_matrix # separate X and y X = df.iloc[:, 0:9] y = df.iloc[:, 9] # initialize catboost classifier cat_clf = CatBoostClassifier(iterations=50, learning_rate=0.3, depth=8, eval_metric='Accuracy', random_seed=42) # fit the model cat_clf.fit(X, y) # predict values y_pred = cat_clf.predict(X) # print confusion matrix conf_mat = confusion_matrix(y, y_pred) print(conf_mat) ## Calculate and Print Performance Metrics from sklearn.metrics import accuracy_score, precision_score, recall_score # calculate performance metrics acc = accuracy_score(y, y_pred) precision = precision_score(y, y_pred) recall = recall_score(y, y_pred) # print performance metrics print("Accuracy: {}".format(acc)) print("Precision: {}".format(precision)) print("Recall: {}".format(recall)) # output 略
- 交易數(shù)據(jù)
詢問 GPT-3:“編寫 Python 代碼,生成交易數(shù)據(jù)”。
completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that generates synthetic transaction data stored in a dataframe", max_tokens=1000) print(completion.choices[0]['text']) # output import pandas as pd import numpy as np #create randomly generated customer data customer_id = np.arange(1,101) customer_names = [f'John Doe {x}' for x in range(1,101)] #create randomly generated transaction data transaction_id = np.arange(1,101) dates = [f'2020-07-{x}' for x in range(1,101)] amounts = np.random.randint(low=1, high=1000, size=(100,)) #create dataframe with randomly generated data transaction_data = pd.DataFrame({'Customer ID': customer_id, 'Customer Name': customer_names, 'Transaction ID': transaction_id, 'Date': dates, 'Amount': amounts}) print(transaction_data)
拷貝代碼,并執(zhí)行:
import pandas as pd import numpy as np #create randomly generated customer data customer_id = np.arange(1,101) customer_names = [f'John Doe {x}' for x in range(1,101)] #create randomly generated transaction data transaction_id = np.arange(1,101) dates = [f'2020-07-{x}' for x in range(1,101)] amounts = np.random.randint(low=1, high=1000, size=(100,)) #create dataframe with randomly generated data transaction_data = pd.DataFrame({'Customer ID': customer_id, 'Customer Name': customer_names, 'Transaction ID': transaction_id, 'Date': dates, 'Amount': amounts}) transaction_data
(部分輸出結果)
現(xiàn)在有物品 ID、客戶和購買金額。讓我們看看是否可以更具體一點。再增加年齡、性別和郵政編碼。
completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that generates synthetic transaction data stored in a dataframe. Include customer ID, transaction amount, item ID, item name, age, gender, and zipcode", max_tokens=2000) print(completion.choices[0]['text']) # output import pandas as pd import numpy as np rows = ['customer_ID', 'transaction_amnt', 'item_ID', 'item_name', 'age', 'gender', 'zipcode'] data = pd.DataFrame(columns=rows) for i in range(1,100): customer_ID = int( np.random.uniform(100,600-100)) transaction_amnt = np.random.uniform(1.25, 10.00) item_ID = int( np.random.uniform(1,35)) item_name = np.random.choice(["phone", "tablet", "laptop", "smartwatch"]) age = int( np.random.uniform(17,75)) gender = np.random.choice(["male", "female"]) zipcode = np.random.choice(["98101", "98200", "98469", "98801"]) data.loc[i] = [customer_ID, transaction_amnt, item_ID, item_name, age, gender, zipcode] print (data)
執(zhí)行代碼:
import pandas as pd import numpy as np rows = ['customer_ID', 'transaction_amnt', 'item_ID', 'item_name', 'age', 'gender', 'zipcode'] data = pd.DataFrame(columns=rows) for i in range(1,100): customer_ID = int( np.random.uniform(100,600-100)) transaction_amnt = np.random.uniform(1.25, 10.00) item_ID = int( np.random.uniform(1,35)) item_name = np.random.choice(["phone", "tablet", "laptop", "smartwatch"]) age = int( np.random.uniform(17,75)) gender = np.random.choice(["male", "female"]) zipcode = np.random.choice(["98101", "98200", "98469", "98801"]) data.loc[i] = [customer_ID, transaction_amnt, item_ID, item_name, age, gender, zipcode] data
(部分輸出結果)
公共數(shù)據(jù)集的詢問提示
另一種應用是詢問 GPT-3 關于公共數(shù)據(jù)集。讓我們詢問 GPT-3 列出一些公共數(shù)據(jù)集:
completion = openai.Completion.create(engine="text-davinci-003", prompt=" list some good public datasets", max_tokens=1000) print(completion.choices[0]['text']) # output 1. US Census Data 2. Enron Email Dataset 3. Global Open Data Index 4. Air Quality Monitoring Data 5. New York City Taxi Trip Data 6. IMF Data 7. World Bank Open Data 8. Google Books Ngrams Dataset 9. Amazon Reviews Dataset 10. UCI Machine Learning Repository
讓我們看看是否可以找到根據(jù) Apache 2.0 許可的公共數(shù)據(jù)。還詢問源鏈接:
completion = openai.Completion.create(engine="text-davinci-003", prompt=" list some good public datasets under apache 2.0 license. provide links to their source", max_tokens=1000, temperature=0) print(completion.choices[0]['text']) # output 1. OpenStreetMap: https://www.openstreetmap.org/ 2. US Census Data: https://www.census.gov/data.html 3. Google Books Ngrams: https://aws.amazon.com/datasets/google-books-ngrams/ 4. Wikipedia: https://dumps.wikimedia.org/enwiki/ 5. US Government Spending Data: https://www.usaspending.gov/ 6. World Bank Open Data: https://data.worldbank.org/ 7. Common Crawl: http://commoncrawl.org/ 8. Open Images: https://storage.googleapis.com/openimages/web/index.html 9. OpenFlights: https://openflights.org/data.html 10. GDELT: http://data.gdeltproject.org/
雖然并不是所有這些鏈接都是正確的,但它在尋找源鏈接方面做得相當不錯。Google Ngrams、Common Crawl和 NASA 數(shù)據(jù)都相當出色。如果不提供數(shù)據(jù)的確切位置,在大多數(shù)情況下,它提供了一個可以找到數(shù)據(jù)的網(wǎng)頁鏈接。
再請求對數(shù)據(jù)進行描述。請注意,雖然結果可能重疊,但它們在每次運行時略有不同。據(jù)我所知,結果并不總是可以相同的:
completion = openai.Completion.create(engine="text-davinci-003", prompt=" list some good public datasets under apache 2.0 license. provide links to their source and descriptions", max_tokens=1000, temperature=0) print(completion.choices[0]['text']) # output 1. OpenStreetMap: OpenStreetMap is a free, editable map of the world, created and maintained by volunteers and available for use under an open license. It contains millions of data points, including roads, buildings, and points of interest. Source: https://www.openstreetmap.org/ 2. Google Books Ngrams: Google Books Ngrams is a dataset of over 5 million books from Google Books, spanning from 1500 to 2008. It contains word counts for each year, allowing researchers to track the usage of words over time. Source: https://aws.amazon.com/datasets/google-books-ngrams/ 3. Wikipedia: Wikipedia is a free, open-source encyclopedia with millions of articles in hundreds of languages. It is available for use under the Creative Commons Attribution-ShareAlike license. Source: https://www.wikipedia.org/ 4. Common Crawl: Common Crawl is a large-scale web crawl that collects data from over 5 billion webpages. It is available for use under the Apache 2.0 license. Source: https://commoncrawl.org/ 5. Open Images Dataset: The Open Images Dataset is a collection of 9 million images annotated with labels spanning over 6000 categories. It is available for use under the Apache 2.0 license. Source: https://storage.googleapis.com/openimages/web/index.html
機器學習問題整理
最后一個示例,將看看 GPT-3 是否可以幫助我們整理機器學習問題。
- 詢問用例
雖然 GPT-3 中的數(shù)據(jù)僅截至2021年,但它仍然可以幫助我們構建與今天仍然相關的 ML 用例。讓我們詢問“社交媒體中有哪些新興的機器學習用例?”:
completion = openai.Completion.create(engine="text-davinci-003", prompt="What are some emerging machine learning use-cases in social media?", max_tokens=1000, temperature=0) print(completion.choices[0]['text']) # output 1. Automated Content Curation: Automatically curating content from social media platforms to create personalized content feeds for users. 2. Sentiment Analysis: Analyzing user sentiment from social media posts to gain insights into customer opinions and preferences. 3. Social Media Monitoring: Using machine learning algorithms to monitor social media conversations and detect potential issues or trends. 4. Social Media Advertising: Leveraging machine learning to optimize social media advertising campaigns and target the right audience. 5. Social Media Recommendations: Using machine learning to recommend content to users based on their interests and preferences.
我們也可以看到在醫(yī)療領域的回復:
completion = openai.Completion.create(engine="text-davinci-003", prompt="What are some emerging machine learning use-cases in healthcare?", max_tokens=1000, temperature=0) print(completion.choices[0]['text']) # output 1. Automated Diagnosis: Machine learning algorithms can be used to analyze patient data and medical images to detect and diagnose diseases. 2. Personalized Medicine: Machine learning algorithms can be used to analyze patient data and medical images to create personalized treatment plans for each patient. 3. Drug Discovery: Machine learning algorithms can be used to analyze large datasets of chemical compounds to identify potential new drugs. 4. Clinical Decision Support: Machine learning algorithms can be used to analyze patient data and medical images to provide clinicians with real-time decision support. 5. Predictive Analytics: Machine learning algorithms can be used to analyze patient data and medical images to predict future health outcomes.
詢問研究項目
現(xiàn)在讓我們看看它是否可以提出一些研究問題。讓我們詢問:“使用深度學習進行圖像檢測有哪些好的研究項目?”
completion = openai.Completion.create(engine="text-davinci-003", prompt="What are some good research questions on using deep learning for image detection?", max_tokens=1000, temperature=0) print(completion.choices[0]['text']) # output 1. What are the most effective deep learning architectures for image detection? 2. How can deep learning be used to improve the accuracy of image detection? 3. What are the most effective methods for training deep learning models for image detection? 4. How can deep learning be used to detect objects in images with varying levels of complexity? 5. How can deep learning be used to detect objects in images with varying levels of illumination? 6. How can deep learning be used to detect objects in images with varying levels of noise? 7. How can deep learning be used to detect objects in images with varying levels of resolution? 8. How can deep learning be used to detect objects in images with varying levels of occlusion? 9. How can deep learning be used to detect objects in images with varying levels of background clutter? 10. How can deep learning be used to detect objects in images with varying levels of rotation?
再問一下 NLP 方向:
completion = openai.Completion.create(engine="text-davinci-003", prompt="What are some good research questions related to NLP transformer models?", max_tokens=1000, temperature=0) print(completion.choices[0]['text']) # output 1. How can transformer models be used to improve the accuracy of natural language processing tasks? 2. What are the most effective methods for training transformer models for natural language processing tasks? 3. How can transformer models be used to improve the efficiency of natural language processing tasks? 4. What are the most effective methods for optimizing transformer models for natural language processing tasks? 5. How can transformer models be used to improve the interpretability of natural language processing tasks? 6. What are the most effective methods for deploying transformer models for natural language processing tasks? 7. How can transformer models be used to improve the scalability of natural language processing tasks? 8. What are the most effective methods for combining transformer models with other natural language processing techniques? 9. How can transformer models be used to improve the robustness of natural language processing tasks? 10. What are the most effective methods for evaluating transformer models for natural language processing tasks?
本文所有代碼都發(fā)布在 GitHub 上。
以上就是Python 調用GPT-3 API實現(xiàn)過程詳解的詳細內容,更多關于Python調用GPT-3 API的資料請關注腳本之家其它相關文章!
相關文章
pytorch人工智能之torch.gather算子用法示例
這篇文章主要介紹了pytorch人工智能之torch.gather算子用法示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2022-09-09Pandas如何對帶有Multi-column(多列名稱)的數(shù)據(jù)排序并寫入Excel中
這篇文章主要介紹了Pandas如何對帶有Multi-column(多列名稱)的數(shù)據(jù)排序并寫入Excel中問題,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2024-02-02AMP?Tensor?Cores節(jié)省內存PyTorch模型詳解
這篇文章主要為大家介紹了AMP?Tensor?Cores節(jié)省內存PyTorch模型詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2022-10-10