spark編程python實(shí)例解讀
spark編程python實(shí)例
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[])
1.pyspark在jupyter notebook中開(kāi)發(fā),測(cè)試,提交
1.1.啟動(dòng)
IPYTHON_OPTS="notebook" /opt/spark/bin/pyspark
下載應(yīng)用,將應(yīng)用下載為.py文件(默認(rèn)notebook后綴是.ipynb)
2.在shell中提交應(yīng)用
wxl@wxl-pc:/opt/spark/bin$ spark-submit /bin/spark-submit /home/wxl/Downloads/pysparkdemo.py
3.遇到的錯(cuò)誤及解決
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[*])
d*
3.1.錯(cuò)誤
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[*])
d*
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[*]) created by <module> at /usr/local/lib/python2.7/dist-packages/IPython/utils/py3compat.py:288
3.2.解決,成功運(yùn)行
在from之后添加
try: sc.stop() except: pass sc=SparkContext('local[2]','First Spark App')
貼上錯(cuò)誤解決方法來(lái)源StackOverFlow
4.源碼
pysparkdemo.ipynb
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from pyspark import SparkContext" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "try:\n", " sc.stop()\n", "except:\n", " pass\n", "sc=SparkContext('local[2]','First Spark App')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "data = sc.textFile(\"data/UserPurchaseHistory.csv\").map(lambda line: line.split(\",\")).map(lambda record: (record[0], record[1], record[2]))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total purchases: 5\n" ] } ], "source": [ "numPurchases = data.count()\n", "print \"Total purchases: %d\" % numPurchases" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
pysparkdemo.py
# coding: utf-8 # In[1]: from pyspark import SparkContext # In[2]: try: sc.stop() except: pass sc=SparkContext('local[2]','First Spark App') # In[3]: data = sc.textFile("data/UserPurchaseHistory.csv").map(lambda line: line.split(",")).map(lambda record: (record[0], record[1], record[2])) # In[4]: numPurchases = data.count() print "Total purchases: %d" % numPurchases # In[ ]:
總結(jié)
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
四行Python3代碼實(shí)現(xiàn)圖片添加美顏效果
這篇文章主要為大家介紹了如何利用Python語(yǔ)言實(shí)現(xiàn)給圖片添加美顏效果,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以跟隨小編一起了解一下2022-04-04Python datatime庫(kù)語(yǔ)法使用詳解
這篇文章主要介紹了Python datatime庫(kù)語(yǔ)法使用詳解,datetime模塊用于是date和time模塊的合集,文章圍繞相關(guān)資料展開(kāi)詳情,感興趣的小伙伴可以擦參考一下2022-07-07詳解Python是如何實(shí)現(xiàn)issubclass的
這篇文章主要介紹了詳解Python是如何實(shí)現(xiàn)issubclass的,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-07-07教你從零開(kāi)始實(shí)現(xiàn)貪吃蛇Python小游戲
這篇文章主要教你從零開(kāi)始實(shí)現(xiàn)貪吃蛇Python小游戲,沒(méi)有使用pygame庫(kù),附帶源碼和注釋,非常有意思,需要的朋友可以參考下2023-03-03python經(jīng)典練習(xí)百題之猴子吃桃三種解法
這篇文章主要給大家介紹了關(guān)于python經(jīng)典練習(xí)百題之猴子吃桃三種解法的相關(guān)資料, Python猴子吃桃子編程是一個(gè)趣味性十足的編程練習(xí),在這個(gè)練習(xí)中,我們將要使用Python語(yǔ)言來(lái)模擬一只猴子吃桃子的過(guò)程,需要的朋友可以參考下2023-10-10Python深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)殘差塊
這篇文章主要為大家介紹了Python深度學(xué)習(xí)中的神經(jīng)網(wǎng)絡(luò)殘差塊示例詳解有需要的 朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2021-10-10詳解python使用canvas實(shí)現(xiàn)移動(dòng)并綁定鍵盤
這篇文章主要為大家介紹了python使用canvas實(shí)現(xiàn)移動(dòng)并綁定鍵盤,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來(lái)幫助2021-12-12