spark編程python實(shí)例解讀
spark編程python實(shí)例
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[])
1.pyspark在jupyter notebook中開(kāi)發(fā),測(cè)試,提交
1.1.啟動(dòng)
IPYTHON_OPTS="notebook" /opt/spark/bin/pyspark

下載應(yīng)用,將應(yīng)用下載為.py文件(默認(rèn)notebook后綴是.ipynb)

2.在shell中提交應(yīng)用
wxl@wxl-pc:/opt/spark/bin$ spark-submit /bin/spark-submit /home/wxl/Downloads/pysparkdemo.py

3.遇到的錯(cuò)誤及解決
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[*])
d*
3.1.錯(cuò)誤
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[*])
d*
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[*]) created by <module> at /usr/local/lib/python2.7/dist-packages/IPython/utils/py3compat.py:288

3.2.解決,成功運(yùn)行
在from之后添加
try:
sc.stop()
except:
pass
sc=SparkContext('local[2]','First Spark App')
貼上錯(cuò)誤解決方法來(lái)源StackOverFlow
4.源碼
pysparkdemo.ipynb
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from pyspark import SparkContext"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"try:\n",
" sc.stop()\n",
"except:\n",
" pass\n",
"sc=SparkContext('local[2]','First Spark App')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data = sc.textFile(\"data/UserPurchaseHistory.csv\").map(lambda line: line.split(\",\")).map(lambda record: (record[0], record[1], record[2]))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total purchases: 5\n"
]
}
],
"source": [
"numPurchases = data.count()\n",
"print \"Total purchases: %d\" % numPurchases"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 0
}pysparkdemo.py
# coding: utf-8
# In[1]:
from pyspark import SparkContext
# In[2]:
try:
sc.stop()
except:
pass
sc=SparkContext('local[2]','First Spark App')
# In[3]:
data = sc.textFile("data/UserPurchaseHistory.csv").map(lambda line: line.split(",")).map(lambda record: (record[0], record[1], record[2]))
# In[4]:
numPurchases = data.count()
print "Total purchases: %d" % numPurchases
# In[ ]:
總結(jié)
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
四行Python3代碼實(shí)現(xiàn)圖片添加美顏效果
這篇文章主要為大家介紹了如何利用Python語(yǔ)言實(shí)現(xiàn)給圖片添加美顏效果,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以跟隨小編一起了解一下2022-04-04
Python datatime庫(kù)語(yǔ)法使用詳解
這篇文章主要介紹了Python datatime庫(kù)語(yǔ)法使用詳解,datetime模塊用于是date和time模塊的合集,文章圍繞相關(guān)資料展開(kāi)詳情,感興趣的小伙伴可以擦參考一下2022-07-07
詳解Python是如何實(shí)現(xiàn)issubclass的
這篇文章主要介紹了詳解Python是如何實(shí)現(xiàn)issubclass的,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-07-07
教你從零開(kāi)始實(shí)現(xiàn)貪吃蛇Python小游戲
這篇文章主要教你從零開(kāi)始實(shí)現(xiàn)貪吃蛇Python小游戲,沒(méi)有使用pygame庫(kù),附帶源碼和注釋,非常有意思,需要的朋友可以參考下2023-03-03
python經(jīng)典練習(xí)百題之猴子吃桃三種解法
這篇文章主要給大家介紹了關(guān)于python經(jīng)典練習(xí)百題之猴子吃桃三種解法的相關(guān)資料, Python猴子吃桃子編程是一個(gè)趣味性十足的編程練習(xí),在這個(gè)練習(xí)中,我們將要使用Python語(yǔ)言來(lái)模擬一只猴子吃桃子的過(guò)程,需要的朋友可以參考下2023-10-10
Python深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)殘差塊
這篇文章主要為大家介紹了Python深度學(xué)習(xí)中的神經(jīng)網(wǎng)絡(luò)殘差塊示例詳解有需要的 朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2021-10-10
詳解python使用canvas實(shí)現(xiàn)移動(dòng)并綁定鍵盤(pán)
這篇文章主要為大家介紹了python使用canvas實(shí)現(xiàn)移動(dòng)并綁定鍵盤(pán),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來(lái)幫助2021-12-12

