Python利用scikit-learn實現(xiàn)近鄰算法分類的示例詳解
scikit-learn庫
scikit-learn已經(jīng)封裝好很多數(shù)據(jù)挖掘的算法
現(xiàn)介紹數(shù)據(jù)挖掘框架的搭建方法
1.轉(zhuǎn)換器(Transformer)用于數(shù)據(jù)預(yù)處理,數(shù)據(jù)轉(zhuǎn)換
2.流水線(Pipeline)組合數(shù)據(jù)挖掘流程,方便再次使用(封裝)
3.估計器(Estimator)用于分類,聚類,回歸分析(各種算法對象)
所有的估計器都有下面2個函數(shù)
fit() 訓(xùn)練
用法:estimator.fit(X_train, y_train)
estimator = KNeighborsClassifier() 是scikit-learn算法對象
X_train = dataset.data 是numpy數(shù)組
y_train = dataset.target 是numpy數(shù)組
predict() 預(yù)測
用法:estimator.predict(X_test)
estimator = KNeighborsClassifier() 是scikit-learn算法對象
X_test = dataset.data 是numpy數(shù)組
示例
%matplotlib inline
# Ionosphere數(shù)據(jù)集
# https://archive.ics.uci.edu/ml/machine-learning-databases/ionosphere/
# 下載ionosphere.data和ionosphere.names文件,放在 ./data/Ionosphere/ 目錄下
import os
home_folder = os.path.expanduser("~")
print(home_folder) # home目錄
# Change this to the location of your dataset
home_folder = "." # 改為當前目錄
data_folder = os.path.join(home_folder, "data")
print(data_folder)
data_filename = os.path.join(data_folder, "ionosphere.data")
print(data_filename)
import csv
import numpy as np
# Size taken from the dataset and is known已知數(shù)據(jù)集形狀
X = np.zeros((351, 34), dtype='float')
y = np.zeros((351,), dtype='bool')
with open(data_filename, 'r') as input_file:
reader = csv.reader(input_file)
for i, row in enumerate(reader):
# Get the data, converting each item to a float
data = [float(datum) for datum in row[:-1]]
# Set the appropriate row in our dataset用真實數(shù)據(jù)覆蓋掉初始化的0
X[i] = data
# 1 if the class is 'g', 0 otherwise
y[i] = row[-1] == 'g' # 相當于if row[-1]=='g': y[i]=1 else: y[i]=0
# 數(shù)據(jù)預(yù)處理
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=14)
print("訓(xùn)練集數(shù)據(jù)有 {} 條".format(X_train.shape[0]))
print("測試集數(shù)據(jù)有 {} 條".format(X_test.shape[0]))
print("每條數(shù)據(jù)有 {} 個features".format(X_train.shape[1]))
輸出:
訓(xùn)練集數(shù)據(jù)有 263 條
測試集數(shù)據(jù)有 88 條
每條數(shù)據(jù)有 34 個features
# 實例化算法對象->訓(xùn)練->預(yù)測->評價
from sklearn.neighbors import KNeighborsClassifier
estimator = KNeighborsClassifier()
estimator.fit(X_train, y_train)
y_predicted = estimator.predict(X_test)
accuracy = np.mean(y_test == y_predicted) * 100
print("準確率 {0:.1f}%".format(accuracy))
# 其他評價方式
from sklearn.cross_validation import cross_val_score
scores = cross_val_score(estimator, X, y, scoring='accuracy')
average_accuracy = np.mean(scores) * 100
print("平均準確率 {0:.1f}%".format(average_accuracy))
avg_scores = []
all_scores = []
parameter_values = list(range(1, 21)) # Including 20
for n_neighbors in parameter_values:
estimator = KNeighborsClassifier(n_neighbors=n_neighbors)
scores = cross_val_score(estimator, X, y, scoring='accuracy')
avg_scores.append(np.mean(scores))
all_scores.append(scores)
輸出:
準確率 86.4%
平均準確率 82.3%
from matplotlib import pyplot as plt plt.figure(figsize=(32,20)) plt.plot(parameter_values, avg_scores, '-o', linewidth=5, markersize=24) #plt.axis([0, max(parameter_values), 0, 1.0])

for parameter, scores in zip(parameter_values, all_scores):
n_scores = len(scores)
plt.plot([parameter] * n_scores, scores, '-o')

plt.plot(parameter_values, all_scores, 'bx')

from collections import defaultdict
all_scores = defaultdict(list)
parameter_values = list(range(1, 21)) # Including 20
for n_neighbors in parameter_values:
for i in range(100):
estimator = KNeighborsClassifier(n_neighbors=n_neighbors)
scores = cross_val_score(estimator, X, y, scoring='accuracy', cv=10)
all_scores[n_neighbors].append(scores)
for parameter in parameter_values:
scores = all_scores[parameter]
n_scores = len(scores)
plt.plot([parameter] * n_scores, scores, '-o')

plt.plot(parameter_values, avg_scores, '-o')

以上就是Python利用scikit-learn實現(xiàn)近鄰算法分類的示例詳解的詳細內(nèi)容,更多關(guān)于Python scikit-learn近鄰算法分類的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python使用QQ郵箱發(fā)送郵件實例與QQ郵箱設(shè)置詳解
這篇文章主要介紹了Python發(fā)送QQ郵件實例與QQ郵箱設(shè)置詳解,需要的朋友可以參考下2020-02-02
Python argparse命令參數(shù)與config配置參數(shù)示例深入詳解
這篇文章主要介紹了Python argparse命令參數(shù)與config配置參數(shù),argparse是Python內(nèi)置的一個用于命令項選項與參數(shù)解析的模塊,通過在程序中定義好我們需要的參數(shù),然后在程序啟動命令行傳遞我們想要改變的參數(shù)2023-03-03
Python計算雙重差分模型DID及其對應(yīng)P值使用詳解
這篇文章主要介紹了Python計算DID及其對應(yīng)P值的使用詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步早日升職加薪2021-09-09

