CoordConv實現(xiàn)卷積加上坐標實例詳解
CoordConv:給你的卷積加上坐標
一、理論介紹
1.1 CoordConv理論詳解
這是一篇考古的論文復現(xiàn)項目,在2018年Uber團隊提出這個CoordConv模塊的時候有很多文章對其進行批評,認為這個不值得發(fā)布一篇論文,但是現(xiàn)在重新看一下這個idea,同時再對比一下目前Transformer中提出的位置編碼(Position Encoding),你就會感概歷史是個圈,在角點卷積中,為卷積添加兩個坐標編碼實際上與Transformer中提出的位置編碼是同樣的道理。 眾所周知,深度學習里的卷積運算是具有平移等變性的,這樣可以在圖像的不同位置共享統(tǒng)一的卷積核參數(shù),但是這樣卷積學習過程中是不能感知當前特征在圖像中的坐標的,論文中的實驗證明如下圖所示。通過該實驗,作者證明了傳統(tǒng)卷積在卷積核進行局部運算時,僅僅能感受到局部信息,并且是無法感受到位置信息的。CoordConv就是通過在卷積的輸入特征圖中新增對應的通道來表征特征圖像素點的坐標,讓卷積學習過程中能夠一定程度感知坐標來提升檢測精度。
傳統(tǒng)卷積無法將空間表示轉換成笛卡爾空間中的坐標和one-hot像素空間中的坐標。卷積是等變的,也就是說當每個過濾器應用到輸入上時,它不知道每個過濾器在哪。我們可以幫助卷積,讓它知道過濾器的位置。這一過程需要在輸入上添加兩個通道實現(xiàn),一個在i坐標,另一個在j坐標。通過上面的添加坐標的操作,我們可以的出一種新的卷積結構--CoordConv,其結構如下圖所示:
二、代碼實戰(zhàn)
本部分根據CoordConv論文并參考飛槳的官方實現(xiàn)完成CoordConv的復現(xiàn)。
import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.regularizer import L2Decay from paddle.nn import AvgPool2D, Conv2D
2.2 CoordConv類代碼實現(xiàn)
首先繼承nn.Layer基類,其次使用paddle.arange
定義gx``gy
兩個坐標,并且停止它們的梯度反傳gx.stop_gradient = True
,最后將它們concat到一起送入卷積即可。
class CoordConv(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride, padding): super(CoordConv, self).__init__() self.conv = Conv2D( in_channels + 2, out_channels , kernel_size , stride , padding) def forward(self, x): b = x.shape[0] h = x.shape[2] w = x.shape[3] gx = paddle.arange(w, dtype='float32') / (w - 1.) * 2.0 - 1. gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w]) gx.stop_gradient = True gy = paddle.arange(h, dtype='float32') / (h - 1.) * 2.0 - 1. gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w]) gy.stop_gradient = True y = paddle.concat([x, gx, gy], axis=1) y = self.conv(y) return y
class dcn2(paddle.nn.Layer): def __init__(self, num_classes=1): super(dcn2, self).__init__() self.conv1 = paddle.nn.Conv2D(in_channels=3, out_channels=32, kernel_size=(3, 3), stride=1, padding = 1) self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=(3,3), stride=2, padding = 0) self.conv3 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=(3,3), stride=2, padding = 0) self.offsets = paddle.nn.Conv2D(64, 18, kernel_size=3, stride=2, padding=1) self.mask = paddle.nn.Conv2D(64, 9, kernel_size=3, stride=2, padding=1) self.conv4 = CoordConv(64, 64, (3,3), 2, 1) self.flatten = paddle.nn.Flatten() self.linear1 = paddle.nn.Linear(in_features=1024, out_features=64) self.linear2 = paddle.nn.Linear(in_features=64, out_features=num_classes) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.flatten(x) x = self.linear1(x) x = F.relu(x) x = self.linear2(x) return x
cnn3 = dcn2() model3 = paddle.Model(cnn3) model3.summary((64, 3, 32, 32))
--------------------------------------------------------------------------- Layer (type) Input Shape Output Shape Param # =========================================================================== Conv2D-26 [[64, 3, 32, 32]] [64, 32, 32, 32] 896 Conv2D-27 [[64, 32, 32, 32]] [64, 64, 15, 15] 18,496 Conv2D-28 [[64, 64, 15, 15]] [64, 64, 7, 7] 36,928 Conv2D-31 [[64, 66, 7, 7]] [64, 64, 4, 4] 38,080 CoordConv-4 [[64, 64, 7, 7]] [64, 64, 4, 4] 0 Flatten-1 [[64, 64, 4, 4]] [64, 1024] 0 Linear-1 [[64, 1024]] [64, 64] 65,600 Linear-2 [[64, 64]] [64, 1] 65 =========================================================================== Total params: 160,065 Trainable params: 160,065 Non-trainable params: 0 --------------------------------------------------------------------------- Input size (MB): 0.75 Forward/backward pass size (MB): 26.09 Params size (MB): 0.61 Estimated Total Size (MB): 27.45 --------------------------------------------------------------------------- {'total_params': 160065, 'trainable_params': 160065}
class MyNet(paddle.nn.Layer): def __init__(self, num_classes=1): super(MyNet, self).__init__() self.conv1 = paddle.nn.Conv2D(in_channels=3, out_channels=32, kernel_size=(3, 3), stride=1, padding = 1) self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=(3,3), stride=2, padding = 0) self.conv3 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=(3,3), stride=2, padding = 0) self.conv4 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=(3,3), stride=2, padding = 1) self.flatten = paddle.nn.Flatten() self.linear1 = paddle.nn.Linear(in_features=1024, out_features=64) self.linear2 = paddle.nn.Linear(in_features=64, out_features=num_classes) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.flatten(x) x = self.linear1(x) x = F.relu(x) x = self.linear2(x) return x
# 可視化模型 cnn1 = MyNet() model1 = paddle.Model(cnn1) model1.summary((64, 3, 32, 32))
--------------------------------------------------------------------------- Layer (type) Input Shape Output Shape Param # =========================================================================== Conv2D-1 [[64, 3, 32, 32]] [64, 32, 32, 32] 896 Conv2D-2 [[64, 32, 32, 32]] [64, 64, 15, 15] 18,496 Conv2D-3 [[64, 64, 15, 15]] [64, 64, 7, 7] 36,928 Conv2D-4 [[64, 64, 7, 7]] [64, 64, 4, 4] 36,928 Flatten-1 [[64, 64, 4, 4]] [64, 1024] 0 Linear-1 [[64, 1024]] [64, 64] 65,600 Linear-2 [[64, 64]] [64, 1] 65 =========================================================================== Total params: 158,913 Trainable params: 158,913 Non-trainable params: 0 --------------------------------------------------------------------------- Input size (MB): 0.75 Forward/backward pass size (MB): 25.59 Params size (MB): 0.61 Estimated Total Size (MB): 26.95 --------------------------------------------------------------------------- {'total_params': 158913, 'trainable_params': 158913}
總結
相信通過之前的教程,相信大家已經能夠熟練掌握了迅速開啟訓練的方法。所以,之后的教程我都會關注于具體的代碼實現(xiàn)以及相關的理論介紹。如無必要,不再進行對比實驗。本次教程主要對CoordConv的理論進行了介紹,對其進行了復現(xiàn),并展示了其在網絡結構中的用法。大家可以根據的實際需要,將其移植到自己的網絡中。
一些需要注意的點
CoordConv的位置在網絡中應該盡量靠前
最好的應用方向是姿態(tài)估計等對位置高度敏感的CV任務
以上就是CoordConv實現(xiàn)卷積加上坐標實例詳解的詳細內容,更多關于CoordConv卷積加坐標的資料請關注腳本之家其它相關文章!
相關文章
在GitHub Pages上使用Pelican搭建博客的教程
這篇文章主要介紹了在GitHub Pages上使用Pelican搭建博客的教程,Pelican是一個使用Python實現(xiàn)的開源博客系統(tǒng),需要的朋友可以參考下2015-04-04Python TCPServer 多線程多客戶端通信的實現(xiàn)
這篇文章主要介紹了Python TCPServer 多線程多客戶端通信的實現(xiàn),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2019-12-12用python實現(xiàn)日志文件,并且按時間命名文件名方式
這篇文章主要介紹了用python實現(xiàn)日志文件,并且按時間命名文件名方式,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2023-08-08Python簡單檢測文本類型的2種方法【基于文件頭及cchardet庫】
這篇文章主要介紹了Python簡單檢測文本類型的方法,結合實例形式分析了基于基于文件頭及cchardet庫兩種文本類型檢測的方法,需要的朋友可以參考下2016-09-09