一文帶你了解Go語(yǔ)言中鎖的實(shí)現(xiàn)
前言
此文為學(xué)習(xí)go鎖和讀寫(xiě)鎖的總結(jié)文檔, 主要從"參考"部分的文章結(jié)合源碼學(xué)習(xí), 總結(jié)于此.
ps: 注釋"r: "開(kāi)頭代表來(lái)自參考文章, 見(jiàn)最后
Mutex
省流不看版:
沒(méi)鎖直接鎖,鎖不上自旋或讓出調(diào)度等待喚醒,直到鎖上.
饑餓模式阻塞隊(duì)列先進(jìn)先出
Lock
// Lock locks m.
// If the lock is already in use, the calling goroutine
// blocks until the mutex is available.
func (m *Mutex) Lock() {
// Fast path: grab unlocked mutex.
// 上鎖,成功返回
if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
return
}
// Slow path (outlined so that the fast path can be inlined)
//已經(jīng)鎖上的寫(xiě)成進(jìn)入慢鎖流程
m.lockSlow()
}lockSlow
func (m *Mutex) lockSlow() {
var waitStartTime int64 //執(zhí)行時(shí)間
starving := false //當(dāng)前請(qǐng)求是否是饑餓模式
awoke := false //當(dāng)前請(qǐng)求是否是喚醒狀態(tài)
iter := 0 //自旋次數(shù)
old := m.state //舊state值
for {
// Don't spin in starvation mode, ownership is handed off to waiters
// so we won't be able to acquire the mutex anyway.
//舊state值已上鎖,并且未進(jìn)入饑餓模式,且可以自旋,進(jìn)入自旋邏輯
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
// Active spinning makes sense.
// Try to set mutexWoken flag to inform Unlock
// to not wake other blocked goroutines.
// 當(dāng)前協(xié)程未喚醒
//&& old.state 為未喚起狀態(tài),就是說(shuō)沒(méi)有其他被喚起的waiter
//&& waiter數(shù)>0
//&& m.state標(biāo)記為喚起狀態(tài)成功
if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
//標(biāo)記當(dāng)前協(xié)程為喚起狀態(tài)
//r: 這是為了通知在解鎖Unlock()中不要再喚醒其他的waiter了
awoke = true
}
//自旋
runtime_doSpin()
//自旋計(jì)數(shù)器
iter++
old = m.state
continue
}
//r: old是鎖當(dāng)前的狀態(tài),new是期望的狀態(tài),以期于在后面的CAS操作中更改鎖的狀態(tài)
//new代表期望的state值
new := old
// Don't try to acquire starving mutex, new arriving goroutines must queue.
//old不是饑餓狀態(tài),new帶上上鎖標(biāo)志位,也就是饑餓狀態(tài)不上鎖
if old&mutexStarving == 0 {
new |= mutexLocked
}
//舊state值是上鎖狀態(tài)或饑餓狀態(tài),新state waiter數(shù)+1
//r: 表示當(dāng)前goroutine將被作為waiter置于等待隊(duì)列隊(duì)尾
if old&(mutexLocked|mutexStarving) != 0 {
new += 1 << mutexWaiterShift
}
// The current goroutine switches mutex to starvation mode.
// But if the mutex is currently unlocked, don't do the switch.
// Unlock expects that starving mutex has waiters, which will not
// be true in this case.
//當(dāng)前協(xié)程為饑餓狀態(tài)&&舊state已上鎖,新state加饑餓標(biāo)志位
if starving && old&mutexLocked != 0 {
new |= mutexStarving
}
//r:? 當(dāng)awoke為true,則表明當(dāng)前goroutine在自旋邏輯中,成功修改鎖的Woken狀態(tài)位為1
if awoke {
// The goroutine has been woken from sleep,
// so we need to reset the flag in either case.
if new&mutexWoken == 0 {
throw("sync: inconsistent mutex state")
}
//新state關(guān)閉喚醒標(biāo)志位
//r: 因?yàn)樵诤罄m(xù)的邏輯中,當(dāng)前goroutine要么是拿到鎖了,要么是被掛起。
// 如果是掛起狀態(tài),那就需要等待其他釋放鎖的goroutine來(lái)喚醒。
// 假如其他goroutine在unlock的時(shí)候發(fā)現(xiàn)Woken的位置不是0,則就不會(huì)去喚醒,那該goroutine就無(wú)法再醒來(lái)加鎖。(見(jiàn)unlock邏輯)
?
new &^= mutexWoken
}
//r: 嘗試將鎖的狀態(tài)更新為期望狀態(tài)
if atomic.CompareAndSwapInt32(&m.state, old, new) {
//舊state不是鎖或饑餓狀態(tài),上鎖成功,返回
if old&(mutexLocked|mutexStarving) == 0 {
break // locked the mutex with CAS
}
// If we were already waiting before, queue at the front of the queue.
//r: 如果走到這里,那就證明當(dāng)前goroutine沒(méi)有獲取到鎖
// 這里判斷waitStartTime != 0就證明當(dāng)前goroutine之前已經(jīng)等待過(guò)了,則需要將其放置在等待隊(duì)列隊(duì)頭
//進(jìn)入隊(duì)列是否排在最前
queueLifo := waitStartTime != 0
if waitStartTime == 0 {
waitStartTime = runtime_nanotime()
}
//阻塞
runtime_SemacquireMutex(&m.sema, queueLifo, 1)
//r: 被信號(hào)量喚醒之后檢查當(dāng)前goroutine是否應(yīng)該表示為饑餓
// (這里表示為饑餓之后,會(huì)在下一輪循環(huán)中嘗試將鎖的狀態(tài)更改為饑餓模式)
// 1. 如果當(dāng)前goroutine已經(jīng)饑餓(在上一次循環(huán)中更改了starving為true)
// 2. 如果當(dāng)前goroutine已經(jīng)等待了1ms以上
//被信號(hào)量喚醒后當(dāng)前協(xié)程是否進(jìn)入饑餓狀態(tài)
//1. 之前是饑餓狀態(tài)
//2. 運(yùn)行時(shí)間超過(guò)1ms
starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
// 再次獲取鎖狀態(tài)
old = m.state
if old&mutexStarving != 0 {
// If this goroutine was woken and mutex is in starvation mode,
// ownership was handed off to us but mutex is in somewhat
// inconsistent state: mutexLocked is not set and we are still
// accounted as waiter. Fix that.
//饑餓模式協(xié)程是在Unlock()時(shí)handoff到當(dāng)前協(xié)程的
//r:? 如果當(dāng)前鎖既不是被獲取也不是被喚醒狀態(tài),或者等待隊(duì)列為空
// 這代表鎖狀態(tài)產(chǎn)生了不一致的問(wèn)題
if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
throw("sync: inconsistent mutex state")
}
//m.state 上鎖,waiter數(shù)-1
delta := int32(mutexLocked - 1<<mutexWaiterShift)
//當(dāng)前協(xié)程不是饑餓狀態(tài)或舊state的waiter數(shù)=1,則m.state饑餓標(biāo)志位置0
if !starving || old>>mutexWaiterShift == 1 {
// Exit starvation mode.
// Critical to do it here and consider wait time.
// Starvation mode is so inefficient, that two goroutines
// can go lock-step infinitely once they switch mutex
// to starvation mode.
delta -= mutexStarving
}
atomic.AddInt32(&m.state, delta)
//拿到鎖,退出.
break
}
awoke = true
iter = 0
} else {
//執(zhí)行循環(huán)前的語(yǔ)句,恢復(fù)最新現(xiàn)場(chǎng)
old = m.state
}
}
?
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
}Unlock
// Unlock unlocks m.
// It is a run-time error if m is not locked on entry to Unlock.
//
// A locked Mutex is not associated with a particular goroutine.
// It is allowed for one goroutine to lock a Mutex and then
// arrange for another goroutine to unlock it.
func (m *Mutex) Unlock() {
if race.Enabled {
_ = m.state
race.Release(unsafe.Pointer(m))
}
?
// Fast path: drop lock bit.
//m.state取消鎖狀態(tài),返回值new代表修改后的新值
//如果為0代表沒(méi)有其他鎖了,退出;否則進(jìn)入unlockSlow()
//鎖空閑有兩種情況:
//1. 所有位為0,代表沒(méi)有鎖了
//2. 標(biāo)志位為0, waiter數(shù)量>0,還有協(xié)程在等待解鎖
new := atomic.AddInt32(&m.state, -mutexLocked)
if new != 0 {
// Outlined slow path to allow inlining the fast path.
// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
m.unlockSlow(new)
}
}UnlockSlow
func (m *Mutex) unlockSlow(new int32) {
if (new+mutexLocked)&mutexLocked == 0 {
throw("sync: unlock of unlocked mutex")
}
if new&mutexStarving == 0 {
old := new
for {
// If there are no waiters or a goroutine has already
// been woken or grabbed the lock, no need to wake anyone.
// In starvation mode ownership is directly handed off from unlocking
// goroutine to the next waiter. We are not part of this chain,
// since we did not observe mutexStarving when we unlocked the mutex above.
// So get off the way.
//解鎖,結(jié)束,退出
//1. 沒(méi)有waiter了
//2. 已上鎖
//3. 鎖處于喚醒狀態(tài),表示有協(xié)程被喚醒
//4. 饑餓模式, 所有權(quán)交給了被解鎖饑餓模式的waiter
if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
return
}
// Grab the right to wake someone.
// 如果能走到這,那就是上面的if判斷沒(méi)通過(guò)
// 說(shuō)明當(dāng)前鎖是空閑狀態(tài),但是等待隊(duì)列中有waiter,且沒(méi)有g(shù)oroutine被喚醒
// 所以,這里我們想要把鎖的狀態(tài)設(shè)置為被喚醒,等待隊(duì)列waiter數(shù)-1
new = (old - 1<<mutexWaiterShift) | mutexWoken
if atomic.CompareAndSwapInt32(&m.state, old, new) {
//通過(guò)信號(hào)量喚醒某一個(gè)waiter,退出
runtime_Semrelease(&m.sema, false, 1)
return
}
//失敗的話,更新old信息,進(jìn)入下個(gè)循環(huán)
old = m.state
}
} else {
// Starving mode: handoff mutex ownership to the next waiter, and yield
// our time slice so that the next waiter can start to run immediately.
// Note: mutexLocked is not set, the waiter will set it after wakeup.
// But mutex is still considered locked if mutexStarving is set,
// so new coming goroutines won't acquire it.
//饑餓模式,喚醒等待隊(duì)列隊(duì)頭waiter
runtime_Semrelease(&m.sema, true, 1)
}
}其他關(guān)鍵函數(shù)
runtime_canSpin
是否可自旋,不展開(kāi)
runtime_doSpin
核心是匯編實(shí)現(xiàn),循環(huán)執(zhí)行三十次PAUSE指令
runtime_SemacquireMutex
信號(hào)量上鎖
sem來(lái)自單詞semaphore 信號(hào)量
runtime_Semrelease
信號(hào)量釋放
func runtime_Semrelease(s *uint32, handoff bool, skipframes int)
If handoff is true, pass count directly to the first waiter.
handoff 就是傳球的意思,handoff 為 false 時(shí),僅僅喚醒等待隊(duì)列中第一個(gè)協(xié)程,但是不會(huì)立馬調(diào)度該協(xié)程;當(dāng) handoff 為 true 時(shí),會(huì)立馬調(diào)度被喚醒的協(xié)程,此外,當(dāng) handoff = true 時(shí),被喚醒的協(xié)程會(huì)繼承當(dāng)前協(xié)程的時(shí)間片。具體例子,假設(shè)每個(gè) goroutine 的時(shí)間片為 2ms,gorounte A 已經(jīng)執(zhí)行了 1ms,假設(shè)它通過(guò) runtime_Semrelease(handoff = true) 喚醒了 goroutine B,則 goroutine B 剩余的時(shí)間片為 2 - 1 = 1ms。
golang 中 sync.Mutex 的實(shí)現(xiàn)
semrelease1(addr, handoff, skipframes) 參數(shù)handoff若為true,則讓被喚醒的g立刻繼承當(dāng)前g的時(shí)間片繼續(xù)執(zhí)行。若handoff為false,則把剛被喚醒的g放到當(dāng)前p的runq中。
RWMutex
很簡(jiǎn)單,看源碼就行
type RWMutex struct {
w Mutex // held if there are pending writers
writerSem uint32 // semaphore for writers to wait for completing readers
readerSem uint32 // semaphore for readers to wait for completing writers
readerCount int32 // number of pending readers 當(dāng)前讀鎖數(shù)量
readerWait int32 // number of departing readers 要離開(kāi)的讀鎖數(shù)量,暨等待寫(xiě)鎖解鎖,解鎖后可以釋放的讀鎖數(shù)量
}Lock()
// Lock locks rw for writing.
// If the lock is already locked for reading or writing,
// Lock blocks until the lock is available.
func (rw *RWMutex) Lock() {
if race.Enabled {
_ = rw.w.state
race.Disable()
}
// First, resolve competition with other writers.
rw.w.Lock() //通過(guò)sync.Lock()限制多寫(xiě)鎖進(jìn)入下邊的邏輯
// Announce to readers there is a pending writer.
//r值不變, rwmutexMaxReaders值為1<<30
//可以理解為只要讀鎖的數(shù)量小于1<<30位,rw.readerCount值<0表示有寫(xiě)鎖.
//也可以理解為加上一個(gè)負(fù)數(shù),將31位以上都標(biāo)記為1,代表有寫(xiě)鎖, 剩余30位記錄讀鎖數(shù)量
r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders
// Wait for active readers.
//r!=0 有讀鎖,不能釋放寫(xiě)鎖
//將readerCount轉(zhuǎn)移到readerWait,readerWait的新值!=0 (以上可以翻譯為有讀鎖,將讀鎖數(shù)轉(zhuǎn)移到讀等待數(shù),然后寫(xiě)鎖阻塞,)
// 滿足上面兩個(gè)條件,寫(xiě)鎖阻塞, 等待喚醒,不返回
if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 {
runtime_SemacquireMutex(&rw.writerSem, false, 0)
}
if race.Enabled {
race.Enable()
race.Acquire(unsafe.Pointer(&rw.readerSem))
race.Acquire(unsafe.Pointer(&rw.writerSem))
}
}UnLock()
// Unlock unlocks rw for writing. It is a run-time error if rw is
// not locked for writing on entry to Unlock.
//
// As with Mutexes, a locked RWMutex is not associated with a particular
// goroutine. One goroutine may RLock (Lock) a RWMutex and then
// arrange for another goroutine to RUnlock (Unlock) it.
func (rw *RWMutex) Unlock() {
if race.Enabled {
_ = rw.w.state
race.Release(unsafe.Pointer(&rw.readerSem))
race.Disable()
}
?
// Announce to readers there is no active writer.\
//將Lock()方法減去的值加回來(lái),變成正數(shù)
r := atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders)
if r >= rwmutexMaxReaders {
race.Enable()
throw("sync: Unlock of unlocked RWMutex")
}
// Unblock blocked readers, if any.
//喚醒在RLock()方法阻塞的讀操作,數(shù)量為r
for i := 0; i < int(r); i++ {
runtime_Semrelease(&rw.readerSem, false, 0)
}
// Allow other writers to proceed.
rw.w.Unlock()
if race.Enabled {
race.Enable()
}
}RLock()
// RLock locks rw for reading.
//
// It should not be used for recursive read locking; a blocked Lock
// call excludes new readers from acquiring the lock. See the
// documentation on the RWMutex type.
func (rw *RWMutex) RLock() {
if race.Enabled {
_ = rw.w.state
race.Disable()
}
//<0表示已上寫(xiě)鎖,阻塞
if atomic.AddInt32(&rw.readerCount, 1) < 0 {
// A writer is pending, wait for it.
runtime_SemacquireMutex(&rw.readerSem, false, 0)
}
if race.Enabled {
race.Enable()
race.Acquire(unsafe.Pointer(&rw.readerSem))
}
}UnRLock()
// RUnlock undoes a single RLock call;
// it does not affect other simultaneous readers.
// It is a run-time error if rw is not locked for reading
// on entry to RUnlock.
func (rw *RWMutex) RUnlock() {
if race.Enabled {
_ = rw.w.state
race.ReleaseMerge(unsafe.Pointer(&rw.writerSem))
race.Disable()
}
//<0表示已上寫(xiě)鎖,慢解鎖
if r := atomic.AddInt32(&rw.readerCount, -1); r < 0 {
// Outlined slow-path to allow the fast-path to be inlined
rw.rUnlockSlow(r)
}
if race.Enabled {
race.Enable()
}
}
?
// RUnlock undoes a single RLock call;
// it does not affect other simultaneous readers.
// It is a run-time error if rw is not locked for reading
// on entry to RUnlock.
func (rw *RWMutex) rUnlockSlow(r int32) {
if r+1 == 0 || r+1 == -rwmutexMaxReaders {
race.Enable()
throw("sync: RUnlock of unlocked RWMutex")
}
// A writer is pending.
//最后一個(gè)讀等待,喚醒寫(xiě)鎖
if atomic.AddInt32(&rw.readerWait, -1) == 0 {
// The last reader unblocks the writer.
runtime_Semrelease(&rw.writerSem, false, 1)
}
}到此這篇關(guān)于一文帶你了解Go語(yǔ)言中鎖的實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān)Go語(yǔ)言 鎖內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Go泛型實(shí)戰(zhàn)教程之如何在結(jié)構(gòu)體中使用泛型
這篇文章主要介紹了Go泛型實(shí)戰(zhàn)教程之如何在結(jié)構(gòu)體中使用泛型,根據(jù)Go泛型使用的三步曲提到的:類型參數(shù)化、定義類型約束、類型實(shí)例化我們一步步來(lái)定義我們的緩存結(jié)構(gòu)體,需要的朋友可以參考下2022-07-07
基于原生Go語(yǔ)言開(kāi)發(fā)一個(gè)博客系統(tǒng)
這篇文章主要為大家詳細(xì)介紹了如何基于原生Go語(yǔ)言開(kāi)發(fā)一個(gè)簡(jiǎn)單的博客系統(tǒng),文中的示例代碼講解詳細(xì),感興趣的小伙伴可以跟隨小編一起學(xué)習(xí)一下2024-02-02
golang gin 監(jiān)聽(tīng)rabbitmq隊(duì)列無(wú)限消費(fèi)的案例代碼
這篇文章主要介紹了golang gin 監(jiān)聽(tīng)rabbitmq隊(duì)列無(wú)限消費(fèi),本文通過(guò)實(shí)例代碼給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2022-12-12
使用Go語(yǔ)言連接和操作數(shù)據(jù)庫(kù)的基本步驟
在Go語(yǔ)言中,連接和操作數(shù)據(jù)庫(kù)通常使用database/sql包,它提供了一個(gè)數(shù)據(jù)庫(kù)抽象層,支持多種數(shù)據(jù)庫(kù)引擎,如MySQL、PostgreSQL、SQLite等,下面我將以MySQL為例,詳細(xì)講解如何使用Go語(yǔ)言連接和操作數(shù)據(jù)庫(kù),需要的朋友可以參考下2024-06-06
Go語(yǔ)言如何實(shí)現(xiàn)TCP通信詳解
go里面實(shí)現(xiàn)tcp沒(méi)有像之前寫(xiě)的C++那些那么麻煩,在C++里面要先創(chuàng)建套接字,然后綁定ip地址,go里面直接就一個(gè)函數(shù)建立套接字,然后在進(jìn)行通信就可以了,下面這篇文章主要給大家介紹了關(guān)于Go語(yǔ)言如何實(shí)現(xiàn)TCP通信的相關(guān)資料,需要的朋友可以參考下2023-01-01

