Python可視化函數(shù)plt.scatter詳解
一、說明
關(guān)于matplotlib的scatter函數(shù)有許多活動參數(shù),如果不專門注解,是無法掌握精髓的,本文專門針對scatter的參數(shù)和調(diào)用說起,并配有若干案例。
二、函數(shù)和參數(shù)詳解
2.1 scatter函數(shù)原型
matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)
2.2 參數(shù)詳解
屬性 | 參數(shù) | 意義 |
坐標 | x,y | 輸入點列的數(shù)組,長度都是size |
點大小 | s | 點的直徑數(shù)組,默認直徑20,長度最大size |
點顏色 | c | 點的顏色,默認藍色 'b',也可以是個 RGB 或 RGBA 二維行數(shù)組。 |
點形狀 | marker | 點的樣式,默認小圓圈 'o'。 |
調(diào)色板 | cmap | Colormap,默認 None,標量或者是一個 colormap 的名字,只有 c 是一個浮點數(shù)數(shù)組時才使用。如果沒有申明就是 image.cmap。 |
亮度(1) | norm | Normalize,默認 None,數(shù)據(jù)亮度在 0-1 之間,只有 c 是一個浮點數(shù)的數(shù)組的時才使用。 |
亮度(2) | vmin,vmax | 亮度設置,在 norm 參數(shù)存在時會忽略。 |
透明度 | alpha | 透明度設置,0-1 之間,默認 None,即不透明 |
線 | linewidths | 標記點的長度 |
顏色 | edgecolors | 顏色或顏色序列,默認為 'face',可選值有 'face', 'none', None。 |
plotnonfinite | 布爾值,設置是否使用非限定的 c ( inf, -inf 或 nan) 繪制點。 | |
**kwargs | 其他參數(shù)。 |
2.3 其中散點的形狀參數(shù)marker如下:
2.4 其中顏色參數(shù)c如下:
三、畫圖示例
3.1 關(guān)于坐標x,y和s,c
import numpy as np import matplotlib.pyplot as plt # Fixing random state for reproducibility np.random.seed(19680801) N = 50 x = np.random.rand(N) y = np.random.rand(N) colors = np.random.rand(N) # 顏色可以隨機 area = (30 * np.random.rand(N))**2 # 點的寬度30,半徑15 plt.scatter(x, y, s=area, c=colors, alpha=0.5) plt.show()
注意:以上核心語句是:
plt.scatter(x, y, s=area, c=colors, alpha=0.5, marker=",")
其中:x,y,s,c維度一樣就能成。
3.2 多元高斯的情況
import numpy as np import matplotlib.pyplot as plt fig=plt.figure(figsize=(8,6)) #Generating a Gaussion dataset: #creating random vectors from the multivariate normal distribution #given mean and covariance mu_vec1=np.array([0,0]) cov_mat1=np.array([[1,0],[0,1]]) X=np.random.multivariate_normal(mu_vec1,cov_mat1,500) R=X**2 R_sum=R.sum(axis=1) plt.scatter(X[:,0],X[:,1],color='green',marker='o', =32.*R_sum,edgecolor='black',alpha=0.5) plt.show()
3.3 繪制例子
from matplotlib import pyplot as plt import numpy as np # Generating a Gaussion dTset: #Creating random vectors from the multivaritate normal distribution #givem mean and covariance mu_vecl = np.array([0, 0]) cov_matl = np.array([[2,0],[0,2]]) x1_samples = np.random.multivariate_normal(mu_vecl, cov_matl,100) x2_samples = np.random.multivariate_normal(mu_vecl+0.2, cov_matl +0.2, 100) x3_samples = np.random.multivariate_normal(mu_vecl+0.4, cov_matl +0.4, 100) plt.figure(figsize = (8, 6)) plt.scatter(x1_samples[:,0], x1_samples[:, 1], marker='x', color = 'blue', alpha=0.7, label = 'x1 samples') plt.scatter(x2_samples[:,0], x1_samples[:,1], marker='o', color ='green', alpha=0.7, label = 'x2 samples') plt.scatter(x3_samples[:,0], x1_samples[:,1], marker='^', color ='red', alpha=0.7, label = 'x3 samples') plt.title('Basic scatter plot') plt.ylabel('variable X') plt.xlabel('Variable Y') plt.legend(loc = 'upper right') plt.show() import matplotlib.pyplot as plt fig,ax = plt.subplots() ax.plot([0],[0], marker="o", markersize=10) ax.plot([0.07,0.93],[0,0], linewidth=10) ax.scatter([1],[0], s=100) ax.plot([0],[1], marker="o", markersize=22) ax.plot([0.14,0.86],[1,1], linewidth=22) ax.scatter([1],[1], s=22**2) plt.show()  import matplotlib.pyplot as plt for dpi in [72,100,144]: fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi) ax.set_title("fig.dpi={}".format(dpi)) ax.set_ylim(-3,3) ax.set_xlim(-2,2) ax.scatter([0],[1], s=10**2, marker="s", linewidth=0, label="100 points^2") ax.scatter([1],[1], s=(10*72./fig.dpi)**2, marker="s", linewidth=0, label="100 pixels^2") ax.legend(loc=8,framealpha=1, fontsize=8) fig.savefig("fig{}.png".format(dpi), bbox_inches="tight") plt.show()
3.4 繪圖例3
import matplotlib.pyplot as plt for dpi in [72,100,144]: fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi) ax.set_title("fig.dpi={}".format(dpi)) ax.set_ylim(-3,3) ax.set_xlim(-2,2) ax.scatter([0],[1], s=10**2, marker="s", linewidth=0, label="100 points^2") ax.scatter([1],[1], s=(10*72./fig.dpi)**2, marker="s", linewidth=0, label="100 pixels^2") ax.legend(loc=8,framealpha=1, fontsize=8) fig.savefig("fig{}.png".format(dpi), bbox_inches="tight") plt.show()
3.5 同心繪制
plt.scatter(2, 1, s=4000, c='r') plt.scatter(2, 1, s=1000 ,c='b') plt.scatter(2, 1, s=10, c='g')
3.6 有標簽繪制
import matplotlib.pyplot as plt x_coords = [0.13, 0.22, 0.39, 0.59, 0.68, 0.74,0.93] y_coords = [0.75, 0.34, 0.44, 0.52, 0.80, 0.25,0.55] fig = plt.figure(figsize = (8,5)) plt.scatter(x_coords, y_coords, marker = 's', s = 50) for x, y in zip(x_coords, y_coords): plt.annotate('(%s,%s)'%(x,y), xy=(x,y),xytext = (0, -10), textcoords = 'offset points',ha = 'center', va = 'top') plt.xlim([0,1]) plt.ylim([0,1]) plt.show()
3.7 直線劃分
# 2-category classfication with random 2D-sample data # from a multivariate normal distribution import numpy as np from matplotlib import pyplot as plt def decision_boundary(x_1): """Calculates the x_2 value for plotting the decision boundary.""" # return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16)) return -x_1 + 1 # Generating a gaussion dataset: # creating random vectors from the multivariate normal distribution # given mean and covariance mu_vec1 = np.array([0,0]) cov_mat1 = np.array([[2,0],[0,2]]) x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100) mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR mu_vec2 = np.array([1,2]) cov_mat2 = np.array([[1,0],[0,1]]) x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100) mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector # Main scatter plot and plot annotation f, ax = plt.subplots(figsize = (7, 7)) ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40) ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40) plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right') plt.title('Densities of 2 classes with 25 bivariate random patterns each') plt.ylabel('x2') plt.xlabel('x1') ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I' plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left') #Adding decision boundary to plot x_1 = np.arange(-5, 5, 0.1) bound = decision_boundary(x_1) plt.plot(x_1, bound, 'r--', lw = 3) x_vec = np.linspace(*ax.get_xlim()) x_1 = np.arange(0, 100, 0.05) plt.show()
3.8 曲線劃分
# 2-category classfication with random 2D-sample data # from a multivariate normal distribution import numpy as np from matplotlib import pyplot as plt def decision_boundary(x_1): """Calculates the x_2 value for plotting the decision boundary.""" return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16)) # Generating a gaussion dataset: # creating random vectors from the multivariate normal distribution # given mean and covariance mu_vec1 = np.array([0,0]) cov_mat1 = np.array([[2,0],[0,2]]) x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100) mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR mu_vec2 = np.array([1,2]) cov_mat2 = np.array([[1,0],[0,1]]) x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100) mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector # Main scatter plot and plot annotation f, ax = plt.subplots(figsize = (7, 7)) ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40) ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40) plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right') plt.title('Densities of 2 classes with 25 bivariate random patterns each') plt.ylabel('x2') plt.xlabel('x1') ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I' plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left') #Adding decision boundary to plot x_1 = np.arange(-5, 5, 0.1) bound = decision_boundary(x_1) plt.plot(x_1, bound, 'r--', lw = 3) x_vec = np.linspace(*ax.get_xlim()) x_1 = np.arange(0, 100, 0.05) plt.show()
到此這篇關(guān)于Python可視化函數(shù)plt.scatter詳解的文章就介紹到這了,更多相關(guān)Python plt.scatter內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python中幾個常用函數(shù)的正確用法-lambda/filter/map/reduce
這篇文章主要介紹了python中幾個常用函數(shù)的正確用法,這幾個常用函數(shù)包括lambda、filter、map、reduce,本文將圍繞這幾個常用函數(shù)展開內(nèi)容,需要的朋友可以參考一下2021-11-11