自然語言處理NLP TextRNN實(shí)現(xiàn)情感分類
概要
在自然語言處理(NLP)領(lǐng)域,情感分析及分類是一項(xiàng)十分熱門的任務(wù)。它的目標(biāo)是從文本中提取出情感信息和意義,通常分為兩類:正向情感和負(fù)向情感,并且可以細(xì)化為多個情感級別。
在這篇文章中,我們將介紹如何使用TextRNN(Text Recurrent Neural Network)來實(shí)現(xiàn)情感短文本分類任務(wù)。我們將探索數(shù)據(jù)預(yù)處理、模型構(gòu)建、訓(xùn)練和評估等主題。
數(shù)據(jù)集
我們將使用公開的中文情感分類數(shù)據(jù)集THUCNews。該數(shù)據(jù)集包括74000個樣本,被標(biāo)記成10個類別:'體育', '娛樂', '家居', '房產(chǎn)', '教育', '時尚', '時政', '游戲', '科技'和 '財經(jīng)'。我們選擇其中5類并按照“csv”格式存儲下來:'體育', '時政', '科技', '娛樂'和‘財經(jīng)’。每個樣本由一條短文本和一個標(biāo)簽組成。
以下是讀取數(shù)據(jù)集和預(yù)覽樣本:
import pandas as pd # 加載數(shù)據(jù)集 df = pd.read_csv('data.csv') # 打印前五個樣本 print(df.head())
輸出:
label | text | |
---|---|---|
0 | 3 | 華彩行動到了20位擔(dān)保人 全國民間組織網(wǎng)絡(luò)代表共襄盛舉 |
1 | 4 | 中移動前4月新用戶凈增955萬用戶 |
2 | 1 | 浙江教育房貸減輕購房壓力 師生建體制 |
3 | 1 | 中央黨校黨的歷史研究院原副院長林必勝先生逝世 |
4 | 1 | 中央黨校黨的歷史研究院實(shí)現(xiàn)640家文博單位軍工企業(yè)4000余名干部學(xué)習(xí)實(shí)踐十八大精神 |
數(shù)據(jù)預(yù)處理
首先,將文本轉(zhuǎn)換為可供模型使用的數(shù)字特征向量是自然語言處理任務(wù)中的關(guān)鍵步驟。我們可以通過利用一種稱為“分詞”的技術(shù),將文本劃分為一個個單詞或詞匯。
對于中文文本,我們將使用jieba分詞庫。以下是代碼實(shí)現(xiàn):
import jieba # 進(jìn)行中文分詞,并將結(jié)果以字符串列表形式返回 def chinese_word_cut(mytext): return ' '.join(jieba.cut(mytext)) df['text'] = df.text.apply(chinese_word_cut)
接下來,我們需要將文本數(shù)據(jù)轉(zhuǎn)換為數(shù)值特征向量。我們可以使用torchtext庫來處理此操作。以下是代碼實(shí)現(xiàn):
import torchtext from torchtext import data # 構(gòu)建Field和Dataset text_field = data.Field(tokenize='spacy', batch_first=True, fix_length=100) label_field = data.LabelField(dtype=torch.long) fields = [('text', text_field), ('label', label_field)] dataset = data.TabularDataset(path='data.csv', format='csv', fields=fields, skip_header=True) # 劃分測試集與訓(xùn)練集,比例為0.8/0.2 train_data, test_data = dataset.split(split_ratio=0.8, random_state=random.getstate()) # 構(gòu)建詞典 text_field.build_vocab(train_data, vectors='glove.6B.100d') label_field.build_vocab(train_data)
在這里,我們定義兩個Field
:第一個用于表示問題文本,第二個用于表示標(biāo)簽。然后,我們將它們放到一個名為“fields”的列表里。數(shù)據(jù)的格式是CSV,并由TabularDataset
加載。
接著,我們對原始數(shù)據(jù)進(jìn)行劃分,將80%的數(shù)據(jù)作為訓(xùn)練集,20%作為測試集。為了能再次處理相同的數(shù)據(jù),我們還設(shè)置了一個種子(random state)。
最后,我們創(chuàng)建了單詞表,并利用預(yù)訓(xùn)練的詞向量(fill-vectors)進(jìn)行初始化。例如,在此處,我們選擇了GloVe詞向量(glove.6B.100d)。GloVe是一種基于全局詞頻的詞向量。
模型構(gòu)建
TextRNN 是一個典型的循環(huán)神經(jīng)網(wǎng)絡(luò)模型,專門用于處理序列數(shù)據(jù)。當(dāng)我們連續(xù)閱讀一篇文章時,記憶通常從前到后流動,并且在閱讀新的單詞時,信息會累積起來,這正是RNN的目標(biāo)。
我們將使用PyTorch來實(shí)現(xiàn)一個簡單的TextRNN模型。以下是代碼實(shí)現(xiàn):
import torch.nn as nn class TextRNN(nn.Module): def __init__(self, vocab_size, embed_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout): super().__init__() self.embedding = nn.Embedding(vocab_size, embed_dim) self.hidden_dim = hidden_dim self.n_layers = n_layers self.bidirectional = bidirectional self.rnn = nn.RNN(embed_dim, hidden_dim, num_layers=n_layers, bidirectional=bidirectional, batch_first=True, dropout=dropout) self.fc = nn.Linear(hidden_dim * 2 if bidirectional else hidden_dim, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, text): embedded = self.embedding(text) output, hidden = self.rnn(embedded) hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)) return self.fc(hidden)
在RNN層之后有兩個線性層:一個用于投影輸出空間,一個用于產(chǎn)生最終結(jié)果。為了避免過擬合,我們還添加了一些丟棄層。
此處的輸入特征為嵌入(embedding)矩陣,該矩陣是固定大小的,其中每行對應(yīng)于詞匯表中的單個單詞。所以第一個參數(shù)為vocab_size, 第二個參數(shù)用于指定分詞后每個單詞的維度。
RNN的隱藏狀態(tài)(h)對于這類任務(wù)非常關(guān)鍵,因?yàn)樗菑闹暗臅r間步的信息生成的,并存儲了讀取所有歷史記錄的能力。在我們的示例中,我們選用GPU加速訓(xùn)練。
模型訓(xùn)練
現(xiàn)在我們準(zhǔn)備好訓(xùn)練模型了。我們將使用PyTorch Lightning框架來加速開發(fā)和調(diào)試的過程。
以下是代碼實(shí)現(xiàn):
import torch from torch.utils.data import DataLoader import pytorch_lightning as pl class Model(pl.LightningModule): def __init__(self, vocab_size, embed_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout=0.5): super(Model, self).__init__() self.rnn = TextRNN(vocab_size, embed_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout) self.loss_fn = nn.CrossEntropyLoss() def forward(self, text): return self.rnn(text) def training_step(self, batch, batch_idx): x, y = batch.text, batch.label pred_y = self(x).squeeze(1) loss = self.loss_fn(pred_y, y) acc = accuracy(pred_y, y) self.log('train_loss', loss, prog_bar=True) self.log('train_acc', acc, prog_bar=True) return {'loss': loss} def validation_step(self, batch, batch_idx): x, y = batch.text, batch.label pred_y = self(x).squeeze(1) loss = self.loss_fn(pred_y, y) acc = accuracy(pred_y, y) self.log('val_loss', loss, prog_bar=True) self.log('val_acc', acc, prog_bar=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=0.001) return optimizer def accuracy(preds, y): _, preds = torch.max(preds, dim=1) correct = (preds == y).float() acc = correct.sum() / len(correct) return acc
這里我們使用LightningModule
來創(chuàng)建一個PyTorch Lightning模型。在訓(xùn)練步驟中,我們計算了損失和準(zhǔn)確率,并將值記錄為train_loss
、train_acc
、val_loss
和 val_acc
。然后我們返回?fù)p失并將PyTorch Lightning接收到的優(yōu)化器作為return語句輸出。
模型評估
現(xiàn)在我們已經(jīng)完成了訓(xùn)練,下一步是評估我們的模型。我們將使用測試集進(jìn)行評估。以下是代碼實(shí)現(xiàn):
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE) ckpt = pl.callbacks.ModelCheckpoint(monitor='val_loss') trainer = pl.Trainer(gpus=1, callbacks=[ckpt]) model = Model(len(text_field.vocab), 100, 128, len(label_field.vocab), 1, True) trainer.fit(model, DataLoader(train_data, batch_size=BATCH_SIZE)) trainer.test(test_dataloaders=test_loader)
在這里,我們將batch size設(shè)置為128,并訓(xùn)練20個epoch。最后,使用測試數(shù)據(jù)評估模型的性能。
結(jié)論
在本文章中,我們介紹了如何使用TextRNN模型來實(shí)現(xiàn)短文本情感分類任務(wù)。我們使用PyTorch和PyTorch Lightning庫建立、訓(xùn)練和評估模型。
雖然我們主要關(guān)注情感分類任務(wù),但這些方法本質(zhì)上可以應(yīng)用于其他NLP問題。
以上就是自然語言處理NLP TextRNN實(shí)現(xiàn)情感分類的詳細(xì)內(nèi)容,更多關(guān)于NLP TextRNN情感分類的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
python psutil監(jiān)控進(jìn)程實(shí)例
今天小編就為大家分享一篇python psutil監(jiān)控進(jìn)程實(shí)例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-12-12對python條件表達(dá)式的四種實(shí)現(xiàn)方法小結(jié)
今天小編就為大家分享一篇對python條件表達(dá)式的四種實(shí)現(xiàn)方法小結(jié),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-01-01在macOS上搭建python環(huán)境的實(shí)現(xiàn)方法
今天小編就為大家分享一篇在macOS上搭建python環(huán)境的實(shí)現(xiàn)方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-08-08解決pycharm無法刪除invalid interpreter(無效解析器)的問題
這篇文章主要介紹了pycharm無法刪除invalid interpreter(無效解析器)的問題,本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2023-07-07用python實(shí)現(xiàn)五子棋實(shí)例
這篇文章主要為大家詳細(xì)介紹了用python實(shí)現(xiàn)五子棋實(shí)例,文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下2022-05-05