numpy.float32的典型用法
本文匯總了Python中numpy.float32方法的典型用法代碼示例,可以為大家提供其具體用法示例。
示例1:draw_image
import numpy as np from numpy import float32 def draw_image(self, img, color=[0, 255, 0], alpha=1.0, copy=True, from_img=None): ? ? ? ? if copy: ? ? ? ? ? ? img = np.copy(img) ? ? ? ? orig_dtype = img.dtype ? ? ? ? if alpha != 1.0 and img.dtype != np.float32: ? ? ? ? ? ? img = img.astype(np.float32, copy=False) ? ? ? ? for rect in self: ? ? ? ? ? ? if from_img is not None: ? ? ? ? ? ? ? ? rect.resize(from_img, img).draw_on_image(img, color=color, alpha=alpha, copy=False) ? ? ? ? ? ? else: ? ? ? ? ? ? ? ? rect.draw_on_image(img, color=color, alpha=alpha, copy=False) ? ? ? ? if orig_dtype != img.dtype: ? ? ? ? ? ? img = img.astype(orig_dtype, copy=False) ? ? ? ? return img
示例2:generate_moving_mnist
import numpy as np from numpy import float32 def generate_moving_mnist(self, num_digits=2): ? ? ''' ? ? Get random trajectories for the digits and generate a video. ? ? ''' ? ? data = np.zeros((self.n_frames_total, self.image_size_, self.image_size_), dtype=np.float32) ? ? for n in range(num_digits): ? ? ? # Trajectory ? ? ? start_y, start_x = self.get_random_trajectory(self.n_frames_total) ? ? ? ind = random.randint(0, self.mnist.shape[0] - 1) ? ? ? digit_image = self.mnist[ind] ? ? ? for i in range(self.n_frames_total): ? ? ? ? top ? ?= start_y[i] ? ? ? ? left ? = start_x[i] ? ? ? ? bottom = top + self.digit_size_ ? ? ? ? right ?= left + self.digit_size_ ? ? ? ? # Draw digit ? ? ? ? data[i, top:bottom, left:right] = np.maximum(data[i, top:bottom, left:right], digit_image) ? ? data = data[..., np.newaxis] ? ? return data?
示例3:wav_format
import numpy as np from numpy import float32 def wav_format(self, input_wave_file, output_wave_file, target_phrase): ? ? ? ? pop_size = 100 ? ? ? ? elite_size = 10 ? ? ? ? mutation_p = 0.005 ? ? ? ? noise_stdev = 40 ? ? ? ? noise_threshold = 1 ? ? ? ? mu = 0.9 ? ? ? ? alpha = 0.001 ? ? ? ? max_iters = 3000 ? ? ? ? num_points_estimate = 100 ? ? ? ? delta_for_gradient = 100 ? ? ? ? delta_for_perturbation = 1e3 ? ? ? ? input_audio = load_wav(input_wave_file).astype(np.float32) ? ? ? ? pop = np.expand_dims(input_audio, axis=0) ? ? ? ? pop = np.tile(pop, (pop_size, 1)) ? ? ? ? output_wave_file = output_wave_file ? ? ? ? target_phrase = target_phrase ? ? ? ? funcs = setup_graph(pop, np.array([toks.index(x) for x in target_phrase]))?
示例4:get_rois_blob
import numpy as np from numpy import float32 def get_rois_blob(im_rois, im_scale_factors): ? ? """Converts RoIs into network inputs. ? ? Arguments: ? ? ? ? im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates ? ? ? ? im_scale_factors (list): scale factors as returned by _get_image_blob ? ? Returns: ? ? ? ? blob (ndarray): R x 5 matrix of RoIs in the image pyramid ? ? """ ? ? rois_blob_real = [] ? ? for i in range(len(im_scale_factors)): ? ? ? ? rois, levels = _project_im_rois(im_rois, np.array([im_scale_factors[i]])) ? ? ? ? rois_blob = np.hstack((levels, rois)) ? ? ? ? rois_blob_real.append(rois_blob.astype(np.float32, copy=False)) ? ? return rois_blob_real?
示例5:generate_anchors_pre
import numpy as np from numpy import float32 def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8,16,32), anchor_ratios=(0.5,1,2)): ? """ A wrapper function to generate anchors given different scales ? ? Also return the number of anchors in variable 'length' ? """ ? anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) ? A = anchors.shape[0] ? shift_x = np.arange(0, width) * feat_stride ? shift_y = np.arange(0, height) * feat_stride ? shift_x, shift_y = np.meshgrid(shift_x, shift_y) ? shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() ? K = shifts.shape[0] ? # width changes faster, so here it is H, W, C ? anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)) ? anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False) ? length = np.int32(anchors.shape[0]) ? return anchors, length?
示例6:draw_heatmap
import numpy as np from numpy import float32 def draw_heatmap(img, heatmap, alpha=0.5): ? ? """Draw a heatmap overlay over an image.""" ? ? assert len(heatmap.shape) == 2 or \ ? ? ? ? (len(heatmap.shape) == 3 and heatmap.shape[2] == 1) ? ? assert img.dtype in [np.uint8, np.int32, np.int64] ? ? assert heatmap.dtype in [np.float32, np.float64] ? ? if img.shape[0:2] != heatmap.shape[0:2]: ? ? ? ? heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8) ? ? ? ? heatmap_rs = ia.imresize_single_image( ? ? ? ? ? ? heatmap_rs[..., np.newaxis], ? ? ? ? ? ? img.shape[0:2], ? ? ? ? ? ? interpolation="nearest" ? ? ? ? ) ? ? ? ? heatmap = np.squeeze(heatmap_rs) / 255.0 ? ? cmap = plt.get_cmap('jet') ? ? heatmap_cmapped = cmap(heatmap) ? ? heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2) ? ? heatmap_cmapped = heatmap_cmapped * 255 ? ? mix = (1-alpha) * img + alpha * heatmap_cmapped ? ? mix = np.clip(mix, 0, 255).astype(np.uint8) ? ? return mix?
示例7:maybe_cast_to_float64
import numpy as np from numpy import float32 def maybe_cast_to_float64(da): ? ? """Cast DataArrays to np.float64 if they are of type np.float32. ? ? Parameters ? ? ---------- ? ? da : xr.DataArray ? ? ? ? Input DataArray ? ? Returns ? ? ------- ? ? DataArray ? ? """ ? ? if da.dtype == np.float32: ? ? ? ? logging.warning('Datapoints were stored using the np.float32 datatype.' ? ? ? ? ? ? ? ? ? ? ? ? 'For accurate reduction operations using bottleneck, ' ? ? ? ? ? ? ? ? ? ? ? ? 'datapoints are being cast to the np.float64 datatype.' ? ? ? ? ? ? ? ? ? ? ? ? ' For more information see: https://github.com/pydata/' ? ? ? ? ? ? ? ? ? ? ? ? 'xarray/issues/1346') ? ? ? ? return da.astype(np.float64) ? ? else: ? ? ? ? return da?
示例8:in_top_k
import numpy as np from numpy import float32 def in_top_k(predictions, targets, k): ? ? '''Returns whether the `targets` are in the top `k` `predictions` ? ? # Arguments ? ? ? ? predictions: A tensor of shape batch_size x classess and type float32. ? ? ? ? targets: A tensor of shape batch_size and type int32 or int64. ? ? ? ? k: An int, number of top elements to consider. ? ? # Returns ? ? ? ? A tensor of shape batch_size and type int. output_i is 1 if ? ? ? ? targets_i is within top-k values of predictions_i ? ? ''' ? ? predictions_top_k = T.argsort(predictions)[:, -k:] ? ? result, _ = theano.map(lambda prediction, target: any(equal(prediction, target)), sequences=[predictions_top_k, targets]
示例9:ctc_path_probs
import numpy as np from numpy import float32 def ctc_path_probs(predict, Y, alpha=1e-4): ? ? smoothed_predict = (1 - alpha) * predict[:, Y] + alpha * np.float32(1.) / Y.shape[0] ? ? L = T.log(smoothed_predict) ? ? zeros = T.zeros_like(L[0]) ? ? log_first = zeros ? ? f_skip_idxs = ctc_create_skip_idxs(Y) ? ? b_skip_idxs = ctc_create_skip_idxs(Y[::-1]) ?# there should be a shortcut to calculating this ? ? def step(log_f_curr, log_b_curr, f_active, log_f_prev, b_active, log_b_prev): ? ? ? ? f_active_next, log_f_next = ctc_update_log_p(f_skip_idxs, zeros, f_active, log_f_curr, log_f_prev) ? ? ? ? b_active_next, log_b_next = ctc_update_log_p(b_skip_idxs, zeros, b_active, log_b_curr, log_b_prev) ? ? ? ? return f_active_next, log_f_next, b_active_next, log_b_next ? ? [f_active, log_f_probs, b_active, log_b_probs], _ = theano.scan( ? ? ? ? step, sequences=[L, L[::-1, ::-1]], outputs_info=[np.int32(1), log_first, np.int32(1), log_first]) ? ? idxs = T.arange(L.shape[1]).dimshuffle('x', 0) ? ? mask = (idxs < f_active.dimshuffle(0, 'x')) & (idxs < b_active.dimshuffle(0, 'x'))[::-1, ::-1] ? ? log_probs = log_f_probs + log_b_probs[::-1, ::-1] - L ? ? return log_probs, mask?
示例10:rmsprop
import numpy as np from numpy import float32 def rmsprop(self, cost, params, lr=0.001, rho=0.9, eps=1e-6,consider_constant=None): ? ? ? ? """ ? ? ? ? RMSProp. ? ? ? ? """ ? ? ? ? lr = theano.shared(np.float32(lr).astype(floatX)) ? ? ? ? gradients = self.get_gradients(cost, params,consider_constant) ? ? ? ? accumulators = [theano.shared(np.zeros_like(p.get_value()).astype(np.float32)) for p in params] ? ? ? ? updates = [] ? ? ? ? for param, gradient, accumulator in zip(params, gradients, accumulators): ? ? ? ? ? ? new_accumulator = rho * accumulator + (1 - rho) * gradient ** 2 ? ? ? ? ? ? updates.append((accumulator, new_accumulator)) ? ? ? ? ? ? new_param = param - lr * gradient / T.sqrt(new_accumulator + eps) ? ? ? ? ? ? updates.append((param, new_param)) ? ? ? ? return updates
示例11:adadelta
import numpy as np from numpy import float32 def adadelta(self, cost, params, rho=0.95, epsilon=1e-6,consider_constant=None): ? ? ? ? """ ? ? ? ? Adadelta. Based on: ? ? ? ? http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf ? ? ? ? """ ? ? ? ? rho = theano.shared(np.float32(rho).astype(floatX)) ? ? ? ? epsilon = theano.shared(np.float32(epsilon).astype(floatX)) ? ? ? ? gradients = self.get_gradients(cost, params,consider_constant) ? ? ? ? accu_gradients = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params] ? ? ? ? accu_deltas = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params] ? ? ? ? updates = [] ? ? ? ? for param, gradient, accu_gradient, accu_delta in zip(params, gradients, accu_gradients, accu_deltas): ? ? ? ? ? ? new_accu_gradient = rho * accu_gradient + (1. - rho) * gradient ** 2. ? ? ? ? ? ? delta_x = - T.sqrt((accu_delta + epsilon) / (new_accu_gradient + epsilon)) * gradient ? ? ? ? ? ? new_accu_delta = rho * accu_delta + (1. - rho) * delta_x ** 2. ? ? ? ? ? ? updates.append((accu_gradient, new_accu_gradient)) ? ? ? ? ? ? updates.append((accu_delta, new_accu_delta)) ? ? ? ? ? ? updates.append((param, param + delta_x)) ? ? ? ? return updates
示例12:adagrad
import numpy as np from numpy import float32 def adagrad(self, cost, params, lr=1.0, epsilon=1e-6,consider_constant=None): ? ? ? ? """ ? ? ? ? Adagrad. Based on http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf ? ? ? ? """ ? ? ? ? lr = theano.shared(np.float32(lr).astype(floatX)) ? ? ? ? epsilon = theano.shared(np.float32(epsilon).astype(floatX)) ? ? ? ? gradients = self.get_gradients(cost, params,consider_constant) ? ? ? ? gsums = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params] ? ? ? ? updates = [] ? ? ? ? for param, gradient, gsum in zip(params, gradients, gsums): ? ? ? ? ? ? new_gsum = gsum + gradient ** 2. ? ? ? ? ? ? updates.append((gsum, new_gsum)) ? ? ? ? ? ? updates.append((param, param - lr * gradient / (T.sqrt(gsum + epsilon)))) ? ? ? ? return updates?
示例13:sgd
import numpy as np from numpy import float32 def sgd(self, cost, params,constraints={}, lr=0.01): ? ? ? ? """ ? ? ? ? Stochatic gradient descent. ? ? ? ? """ ? ? ? ? updates = [] ? ? ? ?? ? ? ? ? lr = theano.shared(np.float32(lr).astype(floatX)) ? ? ? ? gradients = self.get_gradients(cost, params) ? ? ? ?? ? ? ? ? for p, g in zip(params, gradients): ? ? ? ? ? ? v=-lr*g; ? ? ? ? ? ? new_p=p+v; ? ? ? ? ? ? # apply constraints ? ? ? ? ? ? if p in constraints: ? ? ? ? ? ? ? ? c=constraints[p]; ? ? ? ? ? ? ? ? new_p=c(new_p); ? ? ? ? ? ? updates.append((p, new_p)) ? ? ? ? return updates
示例14:sgdmomentum
import numpy as np from numpy import float32 def sgdmomentum(self, cost, params,constraints={}, lr=0.01,consider_constant=None, momentum=0.): ? ? ? ? """ ? ? ? ? Stochatic gradient descent with momentum. Momentum has to be in [0, 1) ? ? ? ? """ ? ? ? ? # Check that the momentum is a correct value ? ? ? ? assert 0 <= momentum < 1 ? ? ? ? lr = theano.shared(np.float32(lr).astype(floatX)) ? ? ? ? momentum = theano.shared(np.float32(momentum).astype(floatX)) ? ? ? ? gradients = self.get_gradients(cost, params) ? ? ? ? velocities = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params] ? ? ? ? updates = [] ? ? ? ? for param, gradient, velocity in zip(params, gradients, velocities): ? ? ? ? ? ? new_velocity = momentum * velocity - lr * gradient ? ? ? ? ? ? updates.append((velocity, new_velocity)) ? ? ? ? ? ? new_p=param+new_velocity; ? ? ? ? ? ? # apply constraints ? ? ? ? ? ? if param in constraints: ? ? ? ? ? ? ? ? c=constraints[param]; ? ? ? ? ? ? ? ? new_p=c(new_p); ? ? ? ? ? ? updates.append((param, new_p)) ? ? ? ? return updates?
示例15:set_values
import numpy as np from numpy import float32 def set_values(name, param, pretrained): ? ? """ ? ? Initialize a network parameter with pretrained values. ? ? We check that sizes are compatible. ? ? """ ? ? param_value = param.get_value() ? ? if pretrained.size != param_value.size: ? ? ? ? raise Exception( ? ? ? ? ? ? "Size mismatch for parameter %s. Expected %i, found %i." ? ? ? ? ? ? % (name, param_value.size, pretrained.size) ? ? ? ? ) ? ? param.set_value(np.reshape( ? ? ? ? pretrained, param_value.shape ? ? ).astype(np.float32))
到此這篇關(guān)于numpy.float32的典型用法的文章就介紹到這了,更多相關(guān)numpy.float32用法內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
使用Python求解最大公約數(shù)的實現(xiàn)方法
這篇文章主要介紹了使用Python求解最大公約數(shù)的實現(xiàn)方法,包括用Python表示歐幾里得算法和Stein算法的求解原理,需要的朋友可以參考下2015-08-08python如何定義一個迭代器去生成偶數(shù)數(shù)列
這篇文章主要介紹了python如何定義一個迭代器去生成偶數(shù)數(shù)列問題,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2024-02-02用于統(tǒng)計項目中代碼總行數(shù)的Python腳本分享
這篇文章主要介紹了用于統(tǒng)計項目中代碼總行數(shù)的Python腳本分享,本文直接給出實現(xiàn)代碼,需要的朋友可以參考下2015-04-04python實現(xiàn)發(fā)送QQ郵件(可加附件)
這篇文章主要為大家詳細介紹了python實現(xiàn)發(fā)送QQ郵件,可添加附件功能,文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下2020-12-12PyCharm2020.1.2社區(qū)版安裝,配置及使用教程詳解(Windows)
這篇文章主要介紹了PyCharm2020.1.2社區(qū)版安裝,配置及使用教程(Windows),本文給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下2020-08-08