Pytorch模型的保存/復(fù)用/遷移實(shí)現(xiàn)代碼
本文整理了Pytorch框架下模型的保存、復(fù)用、推理、再訓(xùn)練和遷移等實(shí)現(xiàn)。
模型的保存與復(fù)用
模型定義和參數(shù)打印
# 定義模型結(jié)構(gòu) class LenNet(nn.Module): def __init__(self): super(LenNet, self).__init__() self.conv = nn.Sequential( # [batch, 1, 28, 28] nn.Conv2d(1, 8, 5, 2), # [batch, 1, 28, 28] nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), # [batch, 8, 14, 14] nn.Conv2d(8, 16, 5), # [batch, 16, 10, 10] nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), # [batch, 16, 5, 5] ) self.fc = nn.Sequential( nn.Flatten(), nn.Linear(16*5*5, 128), nn.ReLU(inplace=True), nn.Linear(128, 64), nn.ReLU(inplace=True), nn.Linear(64, 10) ) def forward(self, X): return self.fc(self.conv(X))
# 查看模型參數(shù) # 網(wǎng)絡(luò)模型中的參數(shù)model.state_dict()是以字典形式保存(實(shí)質(zhì)上是collections模塊中的OrderedDict) model = LenNet() print("Model's state_dict:") for param_tensor in model.state_dict(): print(param_tensor, "\t", model.state_dict()[param_tensor].size()) # 參數(shù)名中的fc和conv前綴是根據(jù)定義nn.Sequential()時(shí)的名字所確定。 # 參數(shù)名中的數(shù)字表示每個(gè)Sequential()中網(wǎng)絡(luò)層所在的位置。 print(model.state_dict().keys()) # 打印鍵 print(model.state_dict().values()) # 打印值 # 優(yōu)化器optimizer的參數(shù)打印類似 optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) print("Optimizer's state_dict:") for var_name in optimizer.state_dict(): print(var_name, "\t", optimizer.state_dict()[var_name])
模型保存
import os # 指定保存的模型名稱時(shí)Pytorch官方建議的后綴為.pt或者.pth model_save_dir = './model_logs/' model_save_path = os.path.join(model_save_dir, 'LeNet.pt') torch.save(model.state_dict(), model_save_path) # 在訓(xùn)練過(guò)程中保存某個(gè)條件下的最優(yōu)模型,可以如下操作 best_model_state = deepcopy(model.state_dict()) torch.save(best_model_state, model_save_path) # 下面這種方法是錯(cuò)誤的,因?yàn)閎est_model_state只是model.state_dict()的引用,會(huì)隨著訓(xùn)練的改變而改變 best_model_state = model.state_dict() torch.save(best_model_state, model_save_path)
模型推理
def inference(data_iter, device, model_save_dir): model = LeNet() # 初始化現(xiàn)有模型的權(quán)重參數(shù) model.to(device) model_save_path = os.path.join(model_save_dir, 'LeNet.pt') # 如果本地存在模型,則加載本地模型參數(shù)覆蓋原有模型 if os.path.exists(model_save_path): loaded_paras = torch.load(model_save_path) model.load_state_dict(loaded_paras) model.eval() with torch.no_grad(): # 開(kāi)始推理 acc_sum, n = 0., 0 for x, y in data_iter: x, y = x.to(device), y.to(device) logits = model(x) acc_sum += (logits.argmax(1) == y).float().sum().item() n += len(y) print("Accuracy in test data is : ", acc_sum / n)
模型再訓(xùn)練
class MyModel: def __init__(self, batch_size=64, epochs=5, learning_rate=0.001, model_save_dir='./MODEL'): self.batch_size = batch_size self.epochs = epochs self.learning_rate = learning_rate self.model_save_dir = model_save_dir self.model = LeNet() def train(self): train_iter, test_iter = load_dataset(self.batch_size) # 在訓(xùn)練過(guò)程中只保存網(wǎng)絡(luò)權(quán)重,在再訓(xùn)練時(shí)只載入網(wǎng)絡(luò)權(quán)重參數(shù)初始化網(wǎng)絡(luò)訓(xùn)練。這里是核心部分,開(kāi)始。 if not os.path.exists(self.model_save_dir): os.makedirs(self.model_save_dir) model_save_path = os.path.join(self.model_save_dir, 'model.pt') if os.path.exists(model_save_path): loaded_paras = torch.load(model_save_path) self.model.load_state_dict(loaded_paras) print("#### 成功載入已有模型,進(jìn)行再訓(xùn)練...") # 結(jié)束 optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model.to(device) for epoch in range(self.epochs): for i, (x, y) in enumerate(train_iter): x, y = x.to(device), y.to(device) loss, logits = self.model(x) optimizer.zero_grad() loss.backward() optimizer.step() if i % 100 == 0: acc = (logits.argmax(1) == y).float().mean() print("Epochs[{}/{}]---batch[{}/{}]---acc {:.4}---loss {:.4}".format( epoch, self.epochs, len(train_iter), i, acc, loss.item())) print("Epochs[{}/{}]--acc on test {:.4}".format(epoch, self.epochs, self.evaluate(test_iter, self.model, device))) torch.save(self.model.state_dict(), model_save_path) @staticmethod def evaluate(data_iter, model, device): with torch.no_grad(): acc_sum, n = 0.0, 0 for x, y in data_iter: x, y = x.to(device), y.to(device) logits = model(x) acc_sum += (logits.argmax(1) == y).float().sum().item() n += len(y) return acc_sum / n
# 在保存參數(shù)的時(shí)候,將優(yōu)化器參數(shù)、損失值等可一同保存,然后在恢復(fù)模型時(shí)連同其它參數(shù)一起恢復(fù) model_save_path = os.path.join(model_save_dir, 'LeNet.pt') torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': loss, ... }, model_save_path) # 加載方式如下 checkpoint = torch.load(model_save_path) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) epoch = checkpoint['epoch'] loss = checkpoint['loss']
模型遷移
# 定義新模型NewLeNet 和LeNet區(qū)別在于新增了一個(gè)全連接層 class NewLenNet(nn.Module): def __init__(self): super(NewLenNet, self).__init__() self.conv = nn.Sequential( # [batch, 1, 28, 28] nn.Conv2d(1, 8, 5, 2), # [batch, 1, 28, 28] nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), # [batch, 8, 14, 14] nn.Conv2d(8, 16, 5), # [batch, 16, 10, 10] nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), # [batch, 16, 5, 5] ) self.fc = nn.Sequential( nn.Flatten(), nn.Linear(16*5*5, 128), nn.ReLU(inplace=True), nn.Linear(128, 64), # 這層以前和LeNet結(jié)構(gòu)一致 可以用LeNet的參數(shù)來(lái)進(jìn)行替換 nn.ReLU(inplace=True), nn.Linear(64, 32), nn.ReLU(inplace=True), nn.Linear(32, 10) ) def forward(self, X): return self.fc(self.conv(X))
# 定義替換函數(shù) 匹配兩個(gè)網(wǎng)絡(luò) size相同處地方進(jìn)行參數(shù)替換 def para_state_dict(model, model_save_dir): state_dict = deepcopy(model.state_dict()) model_save_path = os.path.join(model_save_dir, 'model.pt') if os.path.exists(model_save_path): loaded_paras = torch.load(model_save_path) for key in state_dict: # 在新的網(wǎng)絡(luò)模型中遍歷對(duì)應(yīng)參數(shù) if key in loaded_paras and state_dict[key].size() == loaded_paras[key].size(): print("成功初始化參數(shù):", key) state_dict[key] = loaded_paras[key] return state_dict
# 更新一下模型遷移后的訓(xùn)練代碼 def train(self): train_iter, test_iter = load_dataset(self.batch_size) if not os.path.exists(self.model_save_dir): os.makedirs(self.model_save_dir) model_save_path = os.path.join(self.model_save_dir, 'model_new.pt') old_model = os.path.join(self.model_save_dir, 'LeNet.pt') if os.path.exists(old_model): state_dict = para_state_dict(self.model, self.model_save_dir) # 調(diào)用遷移代碼 將LeNet的前幾層參數(shù)遷移到NewLeNet self.model.load_state_dict(state_dict) print("#### 成功載入已有模型,進(jìn)行再訓(xùn)練...") optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model.to(device) for epoch in range(self.epochs): for i, (x, y) in enumerate(train_iter): x, y = x.to(device), y.to(device) loss, logits = self.model(x) optimizer.zero_grad() loss.backward() optimizer.step() if i % 100 == 0: acc = (logits.argmax(1) == y).float().mean() print("Epochs[{}/{}]---batch[{}/{}]---acc {:.4}---loss {:.4}".format( epoch, self.epochs, len(train_iter), i, acc, loss.item())) print("Epochs[{}/{}]--acc on test {:.4}".format(epoch, self.epochs, self.evaluate(test_iter, self.model, device))) torch.save(self.model.state_dict(), model_save_path)
# 這里更新未進(jìn)行訓(xùn)練的推理 def inference(data_iter, device, model_save_dir='./MODEL'): model = NewLeNet() # 初始化現(xiàn)有模型的權(quán)重參數(shù) print("初始化參數(shù) conv.0.bias 為:", model.state_dict()['conv.0.bias']) model.to(device) state_dict = para_state_dict(model, model_save_dir) # 遷移模型參數(shù) model.load_state_dict(state_dict) model.eval() print("載入本地模型重新初始化 conv.0.bias 為:", model.state_dict()['conv.0.bias']) with torch.no_grad(): acc_sum, n = 0.0, 0 for x, y in data_iter: x, y = x.to(device), y.to(device) logits = model(x) acc_sum += (logits.argmax(1) == y).float().sum().item() n += len(y) print("Accuracy in test data is :", acc_sum / n)
參考文獻(xiàn)
[1] https://github.com/moon-hotel/DeepLearningWithMe
到此這篇關(guān)于Pytorch模型的保存/復(fù)用/遷移的文章就介紹到這了,更多相關(guān)Pytorch模型保存遷移內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python圖像填充與裁剪/resize的實(shí)現(xiàn)代碼
這篇文章主要介紹了python圖像填充與裁剪/resize,本文通過(guò)示例代碼給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2022-08-08pandas中DataFrame新增行及global變量的使用方式
這篇文章主要介紹了pandas中DataFrame新增行及global變量的使用方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2024-02-02python 實(shí)現(xiàn)dict轉(zhuǎn)json并保存文件
今天小編就為大家分享一篇python 實(shí)現(xiàn)dict轉(zhuǎn)json并保存文件,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-12-12Python多進(jìn)程方式抓取基金網(wǎng)站內(nèi)容的方法分析
這篇文章主要介紹了Python多進(jìn)程方式抓取基金網(wǎng)站內(nèi)容的方法,結(jié)合實(shí)例形式分析了Python多進(jìn)程抓取網(wǎng)站內(nèi)容相關(guān)實(shí)現(xiàn)技巧與操作注意事項(xiàng),需要的朋友可以參考下2019-06-06Pycharm 解決自動(dòng)格式化沖突的設(shè)置操作
這篇文章主要介紹了Pycharm 解決自動(dòng)格式化沖突的設(shè)置操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-01-01Python面試之os.system()和os.popen()的區(qū)別詳析
Python調(diào)用Shell,有兩種方法:os.system(cmd)或os.popen(cmd)腳本執(zhí)行過(guò)程中的輸出內(nèi)容,下面這篇文章主要給大家介紹了關(guān)于Python面試之os.system()和os.popen()區(qū)別的相關(guān)資料,需要的朋友可以參考下2022-06-06