VBS教程:函數(shù)-派生數(shù)學函數(shù)
更新時間:2006年11月16日 00:00:00 作者:
派生數(shù)學函數(shù)
下列是由固有數(shù)學函數(shù)派生的非固有數(shù)學函數(shù):
| 函數(shù) | 派生的等效公式 |
|---|---|
| Secant(正割) | Sec(X) = 1 / Cos(X) |
| Cosecant(余割) | Cosec(X) = 1 / Sin(X) |
| Cotangent(余切) | Cotan(X) = 1 / Tan(X) |
| Inverse Sine(反正弦) | Arcsin(X) = Atn(X / Sqr(-X * X + 1)) |
| Inverse Cosine(反余弦) | Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1) |
| Inverse Secant(反正割) | Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) -1) * (2 * Atn(1)) |
| Inverse Cosecant(反余割) | Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1)) |
| Inverse Cotangent(反余切) | Arccotan(X) = Atn(X) + 2 * Atn(1) |
| Hyperbolic Sine(雙曲正弦) | HSin(X) = (Exp(X) - Exp(-X)) / 2 |
| Hyperbolic Cosine(雙曲余弦) | HCos(X) = (Exp(X) + Exp(-X)) / 2 |
| Hyperbolic Tangent(雙曲正切) | HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X)) |
| Hyperbolic Secant(雙曲正割) | HSec(X) = 2 / (Exp(X) + Exp(-X)) |
| Hyperbolic Cosecant(雙曲余割) | HCosec(X) = 2 / (Exp(X) - Exp(-X)) |
| Hyperbolic Cotangent(雙曲余切) | HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X)) |
| Inverse Hyperbolic Sine(反雙曲正弦) | HArcsin(X) = Log(X + Sqr(X * X + 1)) |
| Inverse Hyperbolic Cosine(反雙曲余弦) | HArccos(X) = Log(X + Sqr(X * X - 1)) |
| Inverse Hyperbolic Tangent(反雙曲正切) | HArctan(X) = Log((1 + X) / (1 - X)) / 2 |
| Inverse Hyperbolic Secant(反雙曲正割) | HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X) |
| Inverse Hyperbolic Cosecant(反雙曲余割) | HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X) |
| Inverse Hyperbolic Cotangent(反雙曲余切) | HArccotan(X) = Log((X + 1) / (X - 1)) / 2 |
| 以 N 為底的對數(shù) | LogN(X) = Log(X) / Log(N) |
相關(guān)文章
VBS教程:函數(shù)-GetLocale 函數(shù)
VBS教程:函數(shù)-GetLocale 函數(shù)...2006-11-11
Dynamic Activity Window動態(tài)活動窗口vbs
Dynamic Activity Window動態(tài)活動窗口2008-12-12
Vbs備份指定文件到指定目錄并且以日期重命名的實現(xiàn)代碼
這篇文章主要介紹了Vbs備份指定文件到指定目錄并且以日期重命名的實現(xiàn)代碼,需要的朋友可以參考下2019-09-09

