深入理解Python 代碼優(yōu)化詳解
選擇了腳本語言就要忍受其速度,這句話在某種程度上說明了 python 作為腳本的一個不足之處,那就是執(zhí)行效率和性能不夠理想,特別是在 performance 較差的機器上,因此有必要進行一定的代碼優(yōu)化來提高程序的執(zhí)行效率。如何進行 Python 性能優(yōu)化,是本文探討的主要問題。本文會涉及常見的代碼優(yōu)化方法,性能優(yōu)化工具的使用以及如何診斷代碼的性能瓶頸等內容,希望可以給 Python 開發(fā)人員一定的參考。
代碼優(yōu)化能夠讓程序運行更快,它是在不改變程序運行結果的情況下使得程序的運行效率更高,根據(jù) 80/20 原則,實現(xiàn)程序的重構、優(yōu)化、擴展以及文檔相關的事情通常需要消耗 80% 的工作量。優(yōu)化通常包含兩方面的內容:減小代碼的體積,提高代碼的運行效率。
改進算法,選擇合適的數(shù)據(jù)結構
一個良好的算法能夠對性能起到關鍵作用,因此性能改進的首要點是對算法的改進。在算法的時間復雜度排序上依次是:
O(1) -> O(lg n) -> O(n lg n) -> O(n^2) -> O(n^3) -> O(n^k) -> O(k^n) -> O(n!)
因此如果能夠在時間復雜度上對算法進行一定的改進,對性能的提高不言而喻。但對具體算法的改進不屬于本文討論的范圍,讀者可以自行參考這方面資料。下面的內容將集中討論數(shù)據(jù)結構的選擇。
•字典 (dictionary) 與列表 (list)
Python 字典中使用了 hash table,因此查找操作的復雜度為 O(1),而 list 實際是個數(shù)組,在 list 中,查找需要遍歷整個 list,其復雜度為 O(n),因此對成員的查找訪問等操作字典要比 list 更快。
清單 1. 代碼 dict.py
from time import time
t = time()
list = ['a','b','is','python','jason','hello','hill','with','phone','test',
'dfdf','apple','pddf','ind','basic','none','baecr','var','bana','dd','wrd']
#list = dict.fromkeys(list,True)
print list
filter = []
for i in range (1000000):
for find in ['is','hat','new','list','old','.']:
if find not in list:
filter.append(find)
print "total run time:"
print time()-t
上述代碼運行大概需要 16.09seconds。如果去掉行 #list = dict.fromkeys(list,True) 的注釋,將 list 轉換為字典之后再運行,時間大約為 8.375 seconds,效率大概提高了一半。因此在需要多數(shù)據(jù)成員進行頻繁的查找或者訪問的時候,使用 dict 而不是 list 是一個較好的選擇。
•集合 (set) 與列表 (list)
set 的 union, intersection,difference 操作要比 list 的迭代要快。因此如果涉及到求 list 交集,并集或者差的問題可以轉換為 set 來操作。
清單 2. 求 list 的交集:
from time import time
t = time()
lista=[1,2,3,4,5,6,7,8,9,13,34,53,42,44]
listb=[2,4,6,9,23]
intersection=[]
for i in range (1000000):
for a in lista:
for b in listb:
if a == b:
intersection.append(a)
print "total run time:"
print time()-t
上述程序的運行時間大概為:
total run time:
38.4070000648
清單 3. 使用 set 求交集
from time import time
t = time()
lista=[1,2,3,4,5,6,7,8,9,13,34,53,42,44]
listb=[2,4,6,9,23]
intersection=[]
for i in range (1000000):
list(set(lista)&set(listb))
print "total run time:"
print time()-t
改為 set 后程序的運行時間縮減為 8.75,提高了 4 倍多,運行時間大大縮短。讀者可以自行使用表 1 其他的操作進行測試。
表 1. set 常見用法
語法 | 操作 | 說明 |
---|---|---|
set(list1) | set(list2) | union | 包含 list1 和 list2 所有數(shù)據(jù)的新集合 |
set(list1) & set(list2) | intersection | 包含 list1 和 list2 中共同元素的新集合 |
set(list1) – set(list2) | difference | 在 list1 中出現(xiàn)但不在 list2 中出現(xiàn)的元素的集合 |
對循環(huán)的優(yōu)化
對循環(huán)的優(yōu)化所遵循的原則是盡量減少循環(huán)過程中的計算量,有多重循環(huán)的盡量將內層的計算提到上一層。 下面通過實例來對比循環(huán)優(yōu)化后所帶來的性能的提高。程序清單 4 中,如果不進行循環(huán)優(yōu)化,其大概的運行時間約為 132.375。
清單 4. 為進行循環(huán)優(yōu)化前
from time import time
t = time()
lista = [1,2,3,4,5,6,7,8,9,10]
listb =[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.01]
for i in range (1000000):
for a in range(len(lista)):
for b in range(len(listb)):
x=lista[a]+listb[b]
print "total run time:"
print time()-t
現(xiàn)在進行如下優(yōu)化,將長度計算提到循環(huán)外,range 用 xrange 代替,同時將第三層的計算 lista[a] 提到循環(huán)的第二層。
清單 5. 循環(huán)優(yōu)化后
from time import time
t = time()
lista = [1,2,3,4,5,6,7,8,9,10]
listb =[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.01]
len1=len(lista)
len2=len(listb)
for i in xrange (1000000):
for a in xrange(len1):
temp=lista[a]
for b in xrange(len2):
x=temp+listb[b]
print "total run time:"
print time()-t
上述優(yōu)化后的程序其運行時間縮短為 102.171999931。在清單 4 中 lista[a] 被計算的次數(shù)為 1000000*10*10,而在優(yōu)化后的代碼中被計算的次數(shù)為 1000000*10,計算次數(shù)大幅度縮短,因此性能有所提升。
充分利用 Lazy if-evaluation 的特性
python 中條件表達式是 lazy evaluation 的,也就是說如果存在條件表達式 if x and y,在 x 為 false 的情況下 y 表達式的值將不再計算。因此可以利用該特性在一定程度上提高程序效率。
清單 6. 利用 Lazy if-evaluation 的特性
from time import time
t = time()
abbreviations = ['cf.', 'e.g.', 'ex.', 'etc.', 'fig.', 'i.e.', 'Mr.', 'vs.']
for i in range (1000000):
for w in ('Mr.', 'Hat', 'is', 'chasing', 'the', 'black', 'cat', '.'):
if w in abbreviations:
#if w[-1] == '.' and w in abbreviations:
pass
print "total run time:"
print time()-t
在未進行優(yōu)化之前程序的運行時間大概為 8.84,如果使用注釋行代替第一個 if,運行的時間大概為 6.17。
字符串的優(yōu)化
python 中的字符串對象是不可改變的,因此對任何字符串的操作如拼接,修改等都將產(chǎn)生一個新的字符串對象,而不是基于原字符串,因此這種持續(xù)的 copy 會在一定程度上影響 python 的性能。對字符串的優(yōu)化也是改善性能的一個重要的方面,特別是在處理文本較多的情況下。字符串的優(yōu)化主要集中在以下幾個方面:
1.在字符串連接的使用盡量使用 join() 而不是 +:在代碼清單 7 中使用 + 進行字符串連接大概需要 0.125 s,而使用 join 縮短為 0.016s。因此在字符的操作上 join 比 + 要快,因此要盡量使用 join 而不是 +。
清單 7. 使用 join 而不是 + 連接字符串
from time import time
t = time()
s = ""
list = ['a','b','b','d','e','f','g','h','i','j','k','l','m','n']
for i in range (10000):
for substr in list:
s+= substr
print "total run time:"
print time()-t
同時要避免:
s = ""
for x in list:
s += func(x)
而是要使用:
slist = [func(elt) for elt in somelist]
s = "".join(slist)
2.當對字符串可以使用正則表達式或者內置函數(shù)來處理的時候,選擇內置函數(shù)。如 str.isalpha(),str.isdigit(),str.startswith((‘x', ‘yz')),str.endswith((‘x', ‘yz'))
3.對字符進行格式化比直接串聯(lián)讀取要快,因此要使用
out = "<html>%s%s%s%s</html>" % (head, prologue, query, tail)
而避免
out = "<html>" + head + prologue + query + tail + "</html>"
使用列表解析(list comprehension)和生成器表達式(generator expression)
列表解析要比在循環(huán)中重新構建一個新的 list 更為高效,因此我們可以利用這一特性來提高運行的效率。
from time import time
t = time()
list = ['a','b','is','python','jason','hello','hill','with','phone','test',
'dfdf','apple','pddf','ind','basic','none','baecr','var','bana','dd','wrd']
total=[]
for i in range (1000000):
for w in list:
total.append(w)
print "total run time:"
print time()-t
使用列表解析:
for i in range (1000000):
a = [w for w in list]
上述代碼直接運行大概需要 17s,而改為使用列表解析后 ,運行時間縮短為 9.29s。將近提高了一半。生成器表達式則是在 2.4 中引入的新內容,語法和列表解析類似,但是在大數(shù)據(jù)量處理時,生成器表達式的優(yōu)勢較為明顯,它并不創(chuàng)建一個列表,只是返回一個生成器,因此效率較高。在上述例子上中代碼 a = [w for w in list] 修改為 a = (w for w in list),運行時間進一步減少,縮短約為 2.98s。
其他優(yōu)化技巧
1、如果需要交換兩個變量的值使用 a,b=b,a 而不是借助中間變量 t=a;a=b;b=t;
>>> from timeit import Timer
>>> Timer("t=a;a=b;b=t","a=1;b=2").timeit()
0.25154118749729365
>>> Timer("a,b=b,a","a=1;b=2").timeit()
0.17156677734181258
>>>
2、在循環(huán)的時候使用 xrange 而不是 range;使用 xrange 可以節(jié)省大量的系統(tǒng)內存,因為 xrange() 在序列中每次調用只產(chǎn)生一個整數(shù)元素。而 range() 將直接返回完整的元素列表,用于循環(huán)時會有不必要的開銷。在 python3 中 xrange 不再存在,里面 range 提供一個可以遍歷任意長度的范圍的 iterator。
3、使用局部變量,避免”global” 關鍵字。python 訪問局部變量會比全局變量要快得多,因 此可以利用這一特性提升性能。
4、if done is not None 比語句 if done != None 更快,讀者可以自行驗證;
5、在耗時較多的循環(huán)中,可以把函數(shù)的調用改為內聯(lián)的方式;
6、使用級聯(lián)比較 “x < y < z” 而不是 “x < y and y < z”;
7、while 1 要比 while True 更快(當然后者的可讀性更好);
8、build in 函數(shù)通常較快,add(a,b) 要優(yōu)于 a+b。
定位程序性能瓶頸
對代碼優(yōu)化的前提是需要了解性能瓶頸在什么地方,程序運行的主要時間是消耗在哪里,對于比較復雜的代碼可以借助一些工具來定位,python 內置了豐富的性能分析工具,如 profile,cProfile 與 hotshot 等。其中 Profiler 是 python 自帶的一組程序,能夠描述程序運行時候的性能,并提供各種統(tǒng)計幫助用戶定位程序的性能瓶頸。Python 標準模塊提供三種 profilers:cProfile,profile 以及 hotshot。
profile 的使用非常簡單,只需要在使用之前進行 import 即可。具體實例如下:
清單 8. 使用 profile 進行性能分析
import profile
def profileTest():
Total =1;
for i in range(10):
Total=Total*(i+1)
print Total
return Total
if __name__ == "__main__":
profile.run("profileTest()")
程序的運行結果如下:
圖 1. 性能分析結果
其中輸出每列的具體解釋如下:
•ncalls:表示函數(shù)調用的次數(shù);
•tottime:表示指定函數(shù)的總的運行時間,除掉函數(shù)中調用子函數(shù)的運行時間;
•percall:(第一個 percall)等于 tottime/ncalls;
•cumtime:表示該函數(shù)及其所有子函數(shù)的調用運行的時間,即函數(shù)開始調用到返回的時間;
•percall:(第二個 percall)即函數(shù)運行一次的平均時間,等于 cumtime/ncalls;
•filename:lineno(function):每個函數(shù)調用的具體信息;
如果需要將輸出以日志的形式保存,只需要在調用的時候加入另外一個參數(shù)。如 profile.run(“profileTest()”,”testprof”)。
對于 profile 的剖析數(shù)據(jù),如果以二進制文件的時候保存結果的時候,可以通過 pstats 模塊進行文本報表分析,它支持多種形式的報表輸出,是文本界面下一個較為實用的工具。使用非常簡單:
import pstats
p = pstats.Stats('testprof')
p.sort_stats("name").print_stats()
其中 sort_stats() 方法能夠對剖分數(shù)據(jù)進行排序, 可以接受多個排序字段,如 sort_stats(‘name', ‘file') 將首先按照函數(shù)名稱進行排序,然后再按照文件名進行排序。常見的排序字段有 calls( 被調用的次數(shù) ),time(函數(shù)內部運行時間),cumulative(運行的總時間)等。此外 pstats 也提供了命令行交互工具,執(zhí)行 python – m pstats 后可以通過 help 了解更多使用方式。
對于大型應用程序,如果能夠將性能分析的結果以圖形的方式呈現(xiàn),將會非常實用和直觀,常見的可視化工具有 Gprof2Dot,visualpytune,KCacheGrind 等,讀者可以自行查閱相關官網(wǎng),本文不做詳細討論。
Python 性能優(yōu)化工具
Python 性能優(yōu)化除了改進算法,選用合適的數(shù)據(jù)結構之外,還有幾種關鍵的技術,比如將關鍵 python 代碼部分重寫成 C 擴展模塊,或者選用在性能上更為優(yōu)化的解釋器等,這些在本文中統(tǒng)稱為優(yōu)化工具。python 有很多自帶的優(yōu)化工具,如 Psyco,Pypy,Cython,Pyrex 等,這些優(yōu)化工具各有千秋,本節(jié)選擇幾種進行介紹。
Psyco
psyco 是一個 just-in-time 的編譯器,它能夠在不改變源代碼的情況下提高一定的性能,Psyco 將操作編譯成有點優(yōu)化的機器碼,其操作分成三個不同的級別,有”運行時”、”編譯時”和”虛擬時”變量。并根據(jù)需要提高和降低變量的級別。運行時變量只是常規(guī) Python 解釋器處理的原始字節(jié)碼和對象結構。一旦 Psyco 將操作編譯成機器碼,那么編譯時變量就會在機器寄存器和可直接訪問的內存位置中表示。同時 python 能高速緩存已編譯的機器碼以備今后重用,這樣能節(jié)省一點時間。但 Psyco 也有其缺點,其本身運行所占內存較大。目前 psyco 已經(jīng)不在 python2.7 中支持,而且不再提供維護和更新了,對其感興趣的可以參考 http://psyco.sourceforge.net/
Pypy
PyPy 表示 “用 Python 實現(xiàn)的 Python”,但實際上它是使用一個稱為 RPython 的 Python 子集實現(xiàn)的,能夠將 Python 代碼轉成 C, .NET, Java 等語言和平臺的代碼。PyPy 集成了一種即時 (JIT) 編譯器。和許多編譯器,解釋器不同,它不關心 Python 代碼的詞法分析和語法樹。 因為它是用 Python 語言寫的,所以它直接利用 Python 語言的 Code Object.。 Code Object 是 Python 字節(jié)碼的表示,也就是說, PyPy 直接分析 Python 代碼所對應的字節(jié)碼 ,,這些字節(jié)碼即不是以字符形式也不是以某種二進制格式保存在文件中, 而在 Python 運行環(huán)境中。目前版本是 1.8. 支持不同的平臺安裝,windows 上安裝 Pypy 需要先下載 https://bitbucket.org/pypy/pypy/downloads/pypy-1.8-win32.zip,然后解壓到相關的目錄,并將解壓后的路徑添加到環(huán)境變量 path 中即可。在命令行運行 pypy,如果出現(xiàn)如下錯誤:”沒有找到 MSVCR100.dll, 因此這個應用程序未能啟動,重新安裝應用程序可能會修復此問題”,則還需要在微軟的官網(wǎng)上下載 VS 2010 runtime libraries 解決該問題。具體地址為http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=5555
安裝成功后在命令行里運行 pypy,輸出結果如下:
C:\Documents and Settings\Administrator>pypy
Python 2.7.2 (0e28b379d8b3, Feb 09 2012, 18:31:47)
[PyPy 1.8.0 with MSC v.1500 32 bit] on win32
Type "help", "copyright", "credits" or "license" for more information.
And now for something completely different: ``PyPy is vast, and contains
multitudes''
>>>>
以清單 5 的循環(huán)為例子,使用 python 和 pypy 分別運行,得到的運行結果分別如下:
C:\Documents and Settings\Administrator\ 桌面 \doc\python>pypy loop.py
total run time:
8.42199993134
C:\Documents and Settings\Administrator\ 桌面 \doc\python>python loop.py
total run time:
106.391000032
可見使用 pypy 來編譯和運行程序,其效率大大的提高。
Cython
Cython 是用 python 實現(xiàn)的一種語言,可以用來寫 python 擴展,用它寫出來的庫都可以通過 import 來載入,性能上比 python 的快。cython 里可以載入 python 擴展 ( 比如 import math),也可以載入 c 的庫的頭文件 ( 比如 :cdef extern from “math.h”),另外也可以用它來寫 python 代碼。將關鍵部分重寫成 C 擴展模塊
Linux Cpython 的安裝:
第一步:下載
[root@v5254085f259 cpython]# wget -N http://cython.org/release/Cython-0.15.1.zip
--2012-04-16 22:08:35-- http://cython.org/release/Cython-0.15.1.zip
Resolving cython.org... 128.208.160.197
Connecting to cython.org|128.208.160.197|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2200299 (2.1M) [application/zip]
Saving to: `Cython-0.15.1.zip'
100%[======================================>] 2,200,299 1.96M/s in 1.1s
2012-04-16 22:08:37 (1.96 MB/s) - `Cython-0.15.1.zip' saved [2200299/2200299]
第二步:解壓
[root@v5254085f259 cpython]# unzip -o Cython-0.15.1.zip
第三步:安裝
python setup.py install
安裝完成后直接輸入 cython,如果出現(xiàn)如下內容則表明安裝成功。
[root@v5254085f259 Cython-0.15.1]# cython
Cython (http://cython.org) is a compiler for code written in the
Cython language. Cython is based on Pyrex by Greg Ewing.
Usage: cython [options] sourcefile.{pyx,py} ...
Options:
-V, --version Display version number of cython compiler
-l, --create-listing Write error messages to a listing file
-I, --include-dir <directory> Search for include files in named directory
(multiple include directories are allowed).
-o, --output-file <filename> Specify name of generated C file
-t, --timestamps Only compile newer source files
-f, --force Compile all source files (overrides implied -t)
-q, --quiet Don't print module names in recursive mode
-v, --verbose Be verbose, print file names on multiple compil ation
-p, --embed-positions If specified, the positions in Cython files of each
function definition is embedded in its docstring.
--cleanup <level>
Release interned objects on python exit, for memory debugging.
Level indicates aggressiveness, default 0 releases nothing.
-w, --working <directory>
Sets the working directory for Cython (the directory modules are searched from)
--gdb Output debug information for cygdb
-D, --no-docstrings
Strip docstrings from the compiled module.
-a, --annotate
Produce a colorized HTML version of the source.
--line-directives
Produce #line directives pointing to the .pyx source
--cplus
Output a C++ rather than C file.
--embed[=<method_name>]
Generate a main() function that embeds the Python interpreter.
-2 Compile based on Python-2 syntax and code seman tics.
-3 Compile based on Python-3 syntax and code seman tics.
--fast-fail Abort the compilation on the first error
--warning-error, -Werror Make all warnings into errors
--warning-extra, -Wextra Enable extra warnings
-X, --directive <name>=<value>
[,<name=value,...] Overrides a compiler directive
其他平臺上的安裝可以參考文檔:http://docs.cython.org/src/quickstart/install.html
Cython 代碼與 python 不同,必須先編譯,編譯一般需要經(jīng)過兩個階段,將 pyx 文件編譯為 .c 文件,再將 .c 文件編譯為 .so 文件。編譯有多種方法:
•通過命令行編譯:假設有如下測試代碼,使用命令行編譯為 .c 文件。
def sum(int a,int b):
print a+b
[root@v5254085f259 test]# cython sum.pyx
[root@v5254085f259 test]# ls
total 76
4 drwxr-xr-x 2 root root 4096 Apr 17 02:45 .
4 drwxr-xr-x 4 root root 4096 Apr 16 22:20 ..
4 -rw-r--r-- 1 root root 35 Apr 17 02:45 1
60 -rw-r--r-- 1 root root 55169 Apr 17 02:45 sum.c
4 -rw-r--r-- 1 root root 35 Apr 17 02:45 sum.pyx
在 linux 上利用 gcc 編譯為 .so 文件:
[root@v5254085f259 test]# gcc -shared -pthread -fPIC -fwrapv -O2
-Wall -fno-strict-aliasing -I/usr/include/python2.4 -o sum.so sum.c
[root@v5254085f259 test]# ls
total 96
4 drwxr-xr-x 2 root root 4096 Apr 17 02:47 .
4 drwxr-xr-x 4 root root 4096 Apr 16 22:20 ..
4 -rw-r--r-- 1 root root 35 Apr 17 02:45 1
60 -rw-r--r-- 1 root root 55169 Apr 17 02:45 sum.c
4 -rw-r--r-- 1 root root 35 Apr 17 02:45 sum.pyx
20 -rwxr-xr-x 1 root root 20307 Apr 17 02:47 sum.so
使用 distutils 編譯
建立一個 setup.py 的腳本:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
ext_modules = [Extension("sum", ["sum.pyx"])]
setup(
name = 'sum app',
cmdclass = {'build_ext': build_ext},
ext_modules = ext_modules
)
[root@v5254085f259 test]# python setup.py build_ext --inplace
running build_ext
cythoning sum.pyx to sum.c
building 'sum' extension
gcc -pthread -fno-strict-aliasing -fPIC -g -O2 -DNDEBUG -g -fwrapv -O3
-Wall -Wstrict-prototypes -fPIC -I/opt/ActivePython-2.7/include/python2.7
-c sum.c -o build/temp.linux-x86_64-2.7/sum.o
gcc -pthread -shared build/temp.linux-x86_64-2.7/sum.o
-o /root/cpython/test/sum.so
編譯完成之后可以導入到 python 中使用:
[root@v5254085f259 test]# python
ActivePython 2.7.2.5 (ActiveState Software Inc.) based on
Python 2.7.2 (default, Jun 24 2011, 11:24:26)
[GCC 4.0.2 20051125 (Red Hat 4.0.2-8)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyximport; pyximport.install()
>>> import sum
>>> sum.sum(1,3)
下面來進行一個簡單的性能比較:
清單 9. Cython 測試代碼
from time import time
def test(int n):
cdef int a =0
cdef int i
for i in xrange(n):
a+= i
return a
t = time()
test(10000000)
print "total run time:"
print time()-t
測試結果:
[GCC 4.0.2 20051125 (Red Hat 4.0.2-8)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyximport; pyximport.install()
>>> import ctest
total run time:
0.00714015960693
清單 10. Python 測試代碼
from time import time
def test(n):
a =0;
for i in xrange(n):
a+= i
return a
t = time()
test(10000000)
print "total run time:"
print time()-t
[root@v5254085f259 test]# python test.py
total run time:
0.971596002579
從上述對比可以看到使用 Cython 的速度提高了將近 100 多倍。
總結
本文初步探討了 python 常見的性能優(yōu)化技巧以及如何借助工具來定位和分析程序的性能瓶頸,并提供了相關可以進行性能優(yōu)化的工具或語言,希望能夠更相關人員一些參考。
相關文章
python 使用多線程創(chuàng)建一個Buffer緩存器的實現(xiàn)思路
這篇文章主要介紹了python 使用多線程創(chuàng)建一個Buffer緩存器的實現(xiàn)思路,本文通過實例代碼給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下2020-07-07Pytorch中Softmax和LogSoftmax的使用詳解
這篇文章主要介紹了Pytorch中Softmax和LogSoftmax的使用詳解,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2021-06-06PyTorch 1.0 正式版已經(jīng)發(fā)布了
今天小編就為大家分享一篇關于PyTorch 1.0 正式版已經(jīng)發(fā)布了!小編覺得內容挺不錯的,現(xiàn)在分享給大家,具有很好的參考價值,需要的朋友一起跟隨小編來看看吧2018-12-12