探究Python多進程編程下線程之間變量的共享問題
1、問題:
群中有同學貼了如下一段代碼,問為何 list 最后打印的是空值?
from multiprocessing import Process, Manager import os manager = Manager() vip_list = [] #vip_list = manager.list() def testFunc(cc): vip_list.append(cc) print 'process id:', os.getpid() if __name__ == '__main__': threads = [] for ll in range(10): t = Process(target=testFunc, args=(ll,)) t.daemon = True threads.append(t) for i in range(len(threads)): threads[i].start() for j in range(len(threads)): threads[j].join() print "------------------------" print 'process id:', os.getpid() print vip_list
其實如果你了解 python 的多線程模型,GIL 問題,然后了解多線程、多進程原理,上述問題不難回答,不過如果你不知道也沒關系,跑一下上面的代碼你就知道是什么問題了。
python aa.py process id: 632 process id: 635 process id: 637 process id: 633 process id: 636 process id: 634 process id: 639 process id: 638 process id: 641 process id: 640 ------------------------ process id: 619 []
將第 6 行注釋開啟,你會看到如下結果:
process id: 32074 process id: 32073 process id: 32072 process id: 32078 process id: 32076 process id: 32071 process id: 32077 process id: 32079 process id: 32075 process id: 32080 ------------------------ process id: 32066 [3, 2, 1, 7, 5, 0, 6, 8, 4, 9]
2、python 多進程共享變量的幾種方式:
(1)Shared memory:
Data can be stored in a shared memory map using Value or Array. For example, the following code
http://docs.python.org/2/library/multiprocessing.html#sharing-state-between-processes
from multiprocessing import Process, Value, Array def f(n, a): n.value = 3.1415927 for i in range(len(a)): a[i] = -a[i] if __name__ == '__main__': num = Value('d', 0.0) arr = Array('i', range(10)) p = Process(target=f, args=(num, arr)) p.start() p.join() print num.value print arr[:]
結果:
3.1415927 [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
(2)Server process:
A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.
A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Queue, Value and Array.
代碼見開頭的例子。
http://docs.python.org/2/library/multiprocessing.html#managers
3、多進程的問題遠不止這么多:數(shù)據的同步
看段簡單的代碼:一個簡單的計數(shù)器:
from multiprocessing import Process, Manager import os manager = Manager() sum = manager.Value('tmp', 0) def testFunc(cc): sum.value += cc if __name__ == '__main__': threads = [] for ll in range(100): t = Process(target=testFunc, args=(1,)) t.daemon = True threads.append(t) for i in range(len(threads)): threads[i].start() for j in range(len(threads)): threads[j].join() print "------------------------" print 'process id:', os.getpid() print sum.value
結果:
------------------------ process id: 17378 97
也許你會問:WTF?其實這個問題在多線程時代就存在了,只是在多進程時代又杯具重演了而已:Lock!
from multiprocessing import Process, Manager, Lock import os lock = Lock() manager = Manager() sum = manager.Value('tmp', 0) def testFunc(cc, lock): with lock: sum.value += cc if __name__ == '__main__': threads = [] for ll in range(100): t = Process(target=testFunc, args=(1, lock)) t.daemon = True threads.append(t) for i in range(len(threads)): threads[i].start() for j in range(len(threads)): threads[j].join() print "------------------------" print 'process id:', os.getpid() print sum.value
這段代碼性能如何呢?跑跑看,或者加大循環(huán)次數(shù)試一下。。。
4、最后的建議:
Note that usually sharing data between processes may not be the best choice, because of all the synchronization issues; an approach involving actors exchanging messages is usually seen as a better choice. See also Python documentation: As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as possible. This is particularly true when using multiple processes. However, if you really do need to use some shared data then multiprocessing provides a couple of ways of doing so.
5、Refer:
http://stackoverflow.com/questions/14124588/python-multiprocessing-shared-memory
http://eli.thegreenplace.net/2012/01/04/shared-counter-with-pythons-multiprocessing/
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.sharedctypes.synchronized
相關文章
Python實現(xiàn)批量word文檔轉pdf并統(tǒng)計其頁碼
pypdf2是一個Python模塊,可以用來讀取、寫入和操作PDF文件,本文就將利用該模塊實現(xiàn)批量word文檔轉pdf并統(tǒng)計其頁碼,需要的小伙伴可以了解一下2023-05-05Python編寫一個驗證碼圖片數(shù)據標注GUI程序附源碼
這篇文章主要介紹了Python編寫一個驗證碼圖片數(shù)據標注GUI程序,本文給大家附上小編精心整理的源碼,需要的朋友可以參考下2019-12-12使用Django的JsonResponse返回數(shù)據的實現(xiàn)
這篇文章主要介紹了使用Django的JsonResponse返回數(shù)據的實現(xiàn),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2021-01-01TensorFlow可視化工具TensorBoard默認圖與自定義圖
這篇文章主要介紹了TensorFlow可視化工具TensorBoard默認圖與自定義圖的使用操作示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助2021-10-10